Waste Liberation: Improving mill feed from a miner's perspective

Bob McCarthy, SRK Consulting Dr. Bern Klein, University of British Columbia

Vancouver, BC | May 6-9

🎺 srk consulting

- Introduction
- Ore Deposit Heterogeneity
- Impacts of Mining Scale
- Waste Liberation
- Mining and Pre-concentration Solutions
- Conclusions

Introduction

- Heterogeneity:
 - Inherent in ore deposits; scale varies
 - Masked in block modeling
 - Blended out for consistent mill feed
- With mass mining, increased SMU/block size means:
 - Introduction of waste
 - Further smoothing and reduction of grade
 - Reduction of heterogeneity
- But heterogeneity should be exploited to remove waste early in the mining process
- So how do we identify such waste?

Waste Liberation

- Introduction
- Ore Deposit Heterogeneity
- Impacts of Mining Scale
- Waste Liberation
- Mining and Pre-concentration Solutions
- Conclusions

Orebody Heterogeneity – Au Reef

Source: Dance, 2015 (per Commodas Ultrasort, 2011)

Orebody Heterogeneity – Zn-Pb SEDEX

• Spatial distributions – 0-2% vs >2%

Core Hole Evidence of Heterogeneity

• Sample intervals vs Contiguous intervals in ore zone

Core Hole Evidence of Heterogeneity

• Looking only at the waste (<2% Zn+Pb) in ore zone

- Introduction
- Ore Deposit Heterogeneity
- Impacts of Mining Scale
- Waste Liberation
- Mining and Pre-concentration Solutions
- Conclusions

Core Hole Analysis

- Down hole analysis technique:
 - Aggregating lengths of samples
 - Every sample point can be interpreted in the context of multiple aggregation lengths (similar to composites)
 - The sample point is tested as to whether it is in an aggregate of "ore" or "waste" for varying cut-offs.
 - The sample point itself is compared to the aggregations to determine if it is "waste in ore" or vice versa
- Heterogeneity Calculation:

$$DH^{*}=N_{g}^{*}(\Sigma(a_{i}-a_{L})^{2} \times M_{i}^{2}) / (a_{L}^{2} \times M_{L}^{2})$$

Where N_g is the number of groups (aggregations), α_i and α_L are the grades of group *i* and lot, respectively, while M_i and M_L are the masses of group *i* and the lot.

🌾 srk consulting

* - Distribution Heterogeneity for a dimensionless lot (per Gy, described by Pitard, 1993)

Mining Scale and Average Grade

Gold Property A&B

Silver Property

Source: McCarthy, 2017

Mining Scale and Average Grade

Zinc Property

Copper Property

Source: McCarthy, 2017

Mining Scale and Heterogeneity

All Properties

Zinc & Copper Properties

Source: McCarthy, 2017

Mining Scale and "Waste in Ore"

Source: McCarthy, 2017

14

- Introduction
- Ore Deposit Heterogeneity
- Impacts of Mining Scale
- Waste Liberation
- Mining and Pre-concentration Solutions
- Conclusions

Waste Liberation

- Traditional (mineral) liberation
 - The reduction in size of particles such that the mineral of interest forms the majority of particle mass and is exposed for physical separation methods (e.g. flotation).
- Waste liberation
 - The reduction in size of ore blocks, lumps, or batches such that a point is reached where the contained amount of desired mineral is insufficient in value to pay for the further processing of the material.
 - In other words, due to heterogeneity, a volume of material at a point in the mining-milling process will, in all likelihood, be below the economic cut-off for that point in the process.
 - This can occur at a selective mining unit size (SMU), a truck size, a bucket size, and ultimately a particle size (<300 mm)

🛹 srk consulting

Waste Liberation

- Mineral Deportment to Size Fractions
 - For many ore deposits, valued minerals report to the finer particle size fractions (Bamber, 2008; Dance, 2016; CRC Ore, 2015)
 - Conversely, coarse fractions can have minimal mineralization or at least insufficient for these "particles" to have a grade in excess of the economic cut-off
 - Differential hardness within the ore may in some instances contribute to this characteristic when the harder material itself is not mineral-bearing
 - Is one of CRC Ore's principal concepts underpinning their "Grade Engineering®" - an integrated approach to coarse rejection.

- Introduction
- Ore Deposit Heterogeneity
- Impacts of Mining Scale
- Waste Liberation
- Mining and Pre-concentration Solutions
- Conclusions

Heterogeneity/Opportunity at Every Length Scale

Source: Modified from Bamber, 2017

19

📌 srk consulting

Selective Mining Unit

Small Selective SMU

Source: Modified from Ebrahimi, 2015

SMU and "Waste in Ore"

Source: McCarthy, 2017

21

Screening

- Remove coarse fraction at or near face
 - Discard to waste
 - Or to alternate process (e.g. heap leach)

www.calciumcarbonatecrusher.com

- Leverage with differential blasting
 - Use high intensity blasting in known mineralization
 - Use less explosive energy in potential internal and external dilution
 - Screening out of the coarse, un-mineralized waste pre-concentrates mill feed

Bulk Sorting

Bulk Sorting

Conveyor based

Shovel based

From MineSense

Bulk Sorting and "Waste in Ore"

^{* -} Assumes 100,000 tpd ore feed

Source: McCarthy, 2017

- Introduction
- Ore Deposit Heterogeneity
- Impacts of Mining Scale
- Waste Liberation
- Mining and Pre-concentration Solutions
- Conclusions

Conclusions

- Mass mining results in resource modeling and mine planning at block sizes that mask natural heterogeneity and smooth/reduce grade.
- Waste liberation occurs at the point of fragmentation where there is insufficient mineralization to justify further processing.
- Assessing exploration data at the core hole level can indicate potential waste rejection rates.
- Waste Liberation can be achieved at mining or primary crushing scales.
- Several methods can be used to reduce or remove waste from the mill feed:
 - SMU selection
 - Screening
 - Bulk sorting (with optional particle sorting)

Questions?

For more information:

Bob McCarthy bmccarthy@srk.com

