
1. INTRODUCTION 
Geotechnical design projects often suffer from inherent 
information deficiencies associated with the difficulties 
and often impractical nature of collecting large datasets 
(Read 2009, Read and Stacey 2009).  This leads to 
fundamental issues where geotechnical design must be 
conducted with incomplete knowledge of the true state 
of the system.  Multiple realizations of the subsurface 
are often possible within the framework of the given 
state of information.  To overcome this deficiency, 
reliability and/or probability based methods can be used, 
whereby uncertainty in the capacity and demand is 
explicitly propagated through design calculations (Harr 
1996; Duncan 2000; Wiles 2006; Nadim 2007).  
Conventional practice dictates the geological medium 
should be subdivided into a series of geotechnical units 
whose properties are defined by spatially constant 
random variables (Read and Stacey 2009).  However, an 
underlying uncertainty is introduced into the design 
process as the scale of data collection and analysis often 
differ resulting in data aggregation issues (Gehlke and 
Biehl 1934; Yule and Kendall 1950; Clark and Avery 
1976; Haining 2003).  These issues are exacerbated by 

the application of classical statistical methods and the 
false assumption of data independence, despite the 
inherent spatial variability within natural geological 
systems (Journel and Huijbregts 1978; Isaaks and 
Srivastava 1989; Deutsch 2002). Such oversimplification 
of the spatial heterogeneity favors conservative design 
practices, with an over-estimation of the probability of 
failure (Griffiths and Fenton 2000; Hicks and Samy 
2002).  The result is the inability to reproduce realistic 
failure paths, as the lack of heterogeneity prevents the 
development of step-path failures through the weakest 
areas of the rock mass (Jefferies et al. 2008; Lorig 2009).  

Techniques have been proposed to incorporate spatial 
heterogeneity including explicit modelling within 
geomechanical simulations (Baczynski 1980; Pascoe et 
al. 1998; Jefferies et al. 2008; Srivastava 2012), and the 
use of critical path algorithms for statistical upscaling of 
attribute distributions (Glynn et al. 1978; Glynn 1979; 
O’Reilly 1980; Shair 1981; Einstein et al. 1983; 
Baczynski 2000; Baczynski 2008).  Both methods aim to 
propagate spatial uncertainties through the 
geomechanical design calculations using stochastic 
techniques.  However, a fundamental difference exists, 
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as the former explicitly models the heterogeneities 
within the numerical simulations package, while the 
latter adjusts the attribute statistics prior to their 
incorporation. 

Research attempts to illustrate the limitations of 
conventional probabilistic design practice and statistical 
upscaling techniques in the simulation of spatial 
heterogeneity.  A novel approach has been adapted for 
field of open pit slope design known as sequential 
Gaussian simulation (SGS), which uses variograms to 
constrain spatial co-dependencies within the dataset 
(Journel and Huijbregts 1978; Isaaks and Srivastava 
1989; Deutsch 2002; Nowak and Verly 2007).  
Stochastic techniques are used to construct multiple 
realizations of the subsurface geological strength index 
(𝐺𝐺𝐺𝐺𝐺𝐺) and uniaxial compressive strength (𝑈𝑈𝑈𝑈𝑈𝑈) attributes 
at the Ok Tedi mine site in Papua New Guinea.  Such 
simulations are conducted directly within the 
geomechanical code, FLAC, which is used to estimate 
the pit wall stability (Itasca 2011).  Results are compared 
with conventional probabilistic and statistical upscaling 
techniques to show the limitations of traditional 
methods. 

2. STUDY SITE 
The Ok Tedi mine is a copper porphyry deposit which 
has been in operation since the mid-1980s.  The site is 
located in the remote Western Province of Papua New 
Guinea, near the border with Indonesia (Bamford 1972; 

Davies et al. 1978; Figure 1).  Situated on top of Mt. 
Fubilan at an elevation of 1800 m, the site is surrounded 
by rugged geomorphic features forming a complex 
irregular topography (Hearn 1995).   The mountainous 
topography coupled with tropical latitude results, by 
world mining standards, in very adverse climatic 
conditions, with the mine surrounded by dense tropical 
rain forest and an annual rainfall of 9 to 11 m (de Bruyn 
et al. 2011).  Active uplift associated with the collision 
of the Australian and Pacific tectonic plates results in the 
area experiencing moderate earthquake risks, with events 
typically ranging between 4 and 6 on the Richter scale 
(Baczynski et al. 2011).    

The current areal extent of the pit is approximately 2000 
by 3000 m, with a maximum wall height of 800 m (de 
Bruyn et al. 2011).  A final depth of 900 m is designated 
for end of life operations; however, a decision is pending 
to extend this to 1000 m, through a 200 to 300 m 
pushback of the west wall (de Bruyn et al. 2013).  Slope 
angles average 40o throughout the current pit, with the 
proposed cut-back designated to 38o to 39o.  Conditions 
of all the pit walls are generally poor due to the high 
rates of weathering associated with the large amount of 
rainfall within the area. 

The geology of the Ok Tedi mine site is characterised by 
a repeating succession of sub-horizontal sedimentary 
facies, which have been locally intruded by two igneous 
bodies (Figure 2; Figure 3; de Bruyn et al. 2011; 
Baczynski et al. 2011).  Sedimentary facies have been 

 
Fig. 1. Location of Ok Tedi Mine in Papua New Guinea. 
 

F l y Ri ve r

O
k

Te
di

R
iv

e
r

N

0 2000km1000

2 | P a g e  

 



 

SRK Consulting (Canada) Ltd.  J.M. Mayer, D. Stead 

separated into three distinct units, namely: the Ieru 
Siltstone, Darai Limestone and Pnyang Formation 
(Hearn 1995).  The Ieru Siltstone Formation is 
characterized by grey, calcareous siltstones, interbedded 
with minor medium graded sandstones of Cretaceous 
age.  The unit varies in thickness across the site, up to a 
maximum of 1500 m.  The unit is overlain 
disconformably by a late-Miocene to mid-Eocene, 
massive, foraminiferal, carbonate-rich packstone, 
mudstone and wackestone unit, referred to as the Darai 
Limestone.  The limestone varies in thickness from 50 to 
800 m across the site, and structurally underlies the mid-
Miocene Pnyang Formation.  The Pnyang Formation is 
the youngest of the main sedimentary units found, and is 
composed of calcareous mudstone and siltstone with 
minor amounts of limestone. 

The boundary between the Ieru Siltstone and Darai 
Limestone is characterized by a series of low angle 
thrust faults, referred to as the Taranki, Parrot’s Beak 
and Basal Thrust Zones (Figure 3; Baczynski et al. 
2011).  The faults are the result of uplift associated with 
the collision of the Australian and Pacific plates 
(Fagerlund et al. 2013).  The geology is characterized by 

20 to 80 m thick zones of highly fractured and altered 
fault gouge, pyrite, magnetite skarn lenses, brecciated 
monzodiorite and brecciated siltstone hornfels (de Bruyn 
et al. 2011).  Sedimentary units dip gently towards the 
southwest, with all three thrust zones exposed in the 
west wall. 

In addition to the three thrust faults, the west wall is 
cross-cut by two steeply dipping (70o to 80o) sub-vertical 
faults, referred to as the western (upper) and eastern 
(lower) Gleeson’s faults (de Bruyn et al. 2013; Figure 3).  
The faults strike approximately parallel to the western 
pit wall.  Displacement along the faults has resulted in 
the formation of a discrete fracture zone, bound on each 
side by the respective faults.  The rock mass within the 
zone is highly disturbed and characterized by weak, 
heavily fractured, brecciated rock, with localized 
stronger material (Baczynski et al. 2011).  The two 
bounding faults are characterized by highly brecciated, 
granular and/or highly plastic gouge material.  The west 
wall is also crosscut by several additional, orthogonally 
oriented, high angle faults, which act as possible release 
structures for potential slope failures. 

 

 
Fig. 2. Plan view of surface geology for the 2011 mining conditions at the Ok Tedi site.  The geotechnical borehole collar 
distribution is found to be skewed towards the centre of the pit, specifically targeting the mineralized skarn bodies. 
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Sedimentary units have been locally intruded by two 
igneous bodies, following regional thrust fault activity 
(de Bruyn et al. 2013).  These include the Sydney 
Monzodiorite at the southern end of the pit and the 
Fubilan Monzonite Porphyry to the north (Figure 3).  
The Sydney Monzodiorite is the older of the two 
intrusions, and dates to Pliocene (2.6 Ma; Page 1975).  
The unit is a medium to coarse grained, dioritic intrusive 
body, which is generally unmineralized (de Bruyn et al. 
2011).  In comparison, the younger (1.1 to 1.2 Ma) 
Fubilan Monzonite Porphyry is mineralized and hosts 
the main economic mineralization, along with proximal 
skarnified bodies (Page 1975).  The unit is a porphyritic, 
felsic body, which has caused local skarnification of the 
Darai Limestone and extensive potassic alteration of the 
Ieru Siltstone (Baczynski et al. 2011).  Skarn units are 
sub-divided into four distinct units, namely: endoskarns, 
calc-silicate skarns, massive magnetite skarns, and 
massive sulphide skarns.  In addition to local alteration, 
igneous emplacement has resulted in a slight up-doming 
of sedimentary strata.  This has led to the sedimentary 
layers having a slight dip into the pit walls. 

The groundwater system is dominated by a gravity 
driven, high recharge system, which has been 
compartmentalized by the Taranaki, Parrot’s Beak and 
Basal thrust faults (Fagerlund et al. 2013).  These zones 
result in perching and damming of internal aquifers.  In 
total, three aquifers exist and are referred to as the 
Taranaki, Parrot’s Beak and Basal aquifers, based on the 

thrust fault defining their lower surface.  These thrust 
faults dominate the groundwater flow regime, and their 
slight upward doming morphology causes the majority 
of groundwater to flow away from the pit walls; 
however, minor seepage is observed on the pit wall 
between 40 and 100 m above the pit floor.  This is 
enhanced by gravity driven flow mechanisms associated 
with the location of the Ok Tedi pit at the top of Mt. 
Fubilan.  Hydraulic testing of sedimentary and igneous 
units generally indicates higher hydraulic conductivities 
(10-7 to 10-6 m/s) compared to fault zones (10-9 to 10-8 
m/s) due to a large degree of fracture and karst 
development.  Sub-vertical fault zones in the western pit 
wall are thought to further compartmentalize flow due to 
their high gouge content.  The high recharge rates are 
associated with the extremely high annual rainfall (9 to 
11 m) found throughout the site (Hearn 1995). 

3. BOREHOLE DATA 
Borehole data from the Ok Tedi mine was provided by 
Ok Tedi Mining Ltd. through SRK Consulting.  The 
database included 153 boreholes, subdivided into 8,178 
discrete geotechnical logging intervals.  Borehole 
logging intervals were found to vary greatly in size, with 
a range of 0.01 to 64.40 m.  The spatial distribution of 
the borehole collars is also greatly skewed towards the 
center of the Ok Tedi pit, coinciding with the main 
mineralization targets (Figure 2).  Logging intervals 

 
Fig. 3. Cross section through the Ok Tedi pit at a northing of 423850.  Inset shows the location of the cross section relative to the 
pre-mining geological model. 
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were characterized by on-site geotechnical staff using 
the Laubscher MRMR rock mass classification system 
and later transformed by SRK Consulting to the 
Bieniawski 𝑅𝑅𝑅𝑅𝑅𝑅89 system (Bieniawski 1976; 
Bieniawski 1989; Laubscher 1990; Jakubec and 
Laubscher 2000; Laubscher and Jakubec 2001). 

Simulation of the rock mass behaviour was conducted 
using the empirical Hoek-Brown criterion (Hoek and 
Marinos 2007).  The method is based on the assumption 
that rock masses fail through sliding and/or rotation of 
intact rock blocks and requires the definition of four 
parameters, namely: geological strength index (𝐺𝐺𝐺𝐺𝐺𝐺), 
intact rock uniaxial compressive strength (𝜎𝜎𝑐𝑐𝑐𝑐), material 
constant (𝑚𝑚𝑖𝑖), and a disturbance factor (𝐷𝐷; Hoek et al. 
2002).  The 𝐺𝐺𝐺𝐺𝐺𝐺 was estimated from borehole data 
through conversion of 𝑅𝑅𝑅𝑅𝑅𝑅89 values.  Conversion of the 
majority of 𝑅𝑅𝑅𝑅𝑅𝑅89 values utilized the formula (Hoek 
1994): 

  𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑅𝑅𝑅𝑅𝑅𝑅89 − 5 (1) 

However, this approach is inappropriate within highly 
fractured and/or decomposed intervals, as the 𝑅𝑅𝑅𝑅𝑅𝑅89 
system has been shown to be unsuitable for 
characterizing overall rock mass behaviour in such 
conditions (Hoek et al. 1995; Hoek et al. 2002).  To 
compensate for this limitation, GSI values were directly 
assigned to intervals described as highly fragmented, 
crushed and/or decomposed zones within the 
geotechnical database.  This was conducted according to 
Table 1 constructed by SRK Consulting for the Ok Tedi 
mine site (SRK 2012).  Values assigned to these highly 
fractured zones were treated as random variables, 
defined by uniform distributions within the designated 
GSI range.  The resultant medial GSI values for each 
geological unit are summarized in Table 2. 

Intact rock uniaxial compressive strength (𝑈𝑈𝑈𝑈𝑈𝑈) was 
characterized directly from the 𝐼𝐼𝑠𝑠50 tensile point-load 
test results (Table 2).  Point-load estimates were chosen 
for two reasons.  First, the dataset was large and broadly 

distributed throughout the study region, unlike 
laboratory test results which were spatially limited.  
Second, point-load data were collected independently 
from 𝑅𝑅𝑅𝑅𝑅𝑅89 estimates, unlike simple hammer tests, 
which exhibited an underlying bias based on the 
condition of the rock mass.  This underlying bias is 
observed in the Ok Tedi dataset by an increase in the 
correlation coefficient between the non-declustered 𝑈𝑈𝑈𝑈𝑈𝑈 
and 𝐺𝐺𝐺𝐺𝐺𝐺 data from 0.16 with point-load estimates to 0.61 
with hammer test results. 

The material constant (𝑚𝑚𝑖𝑖) is a difficult parameter to 
characterize as proper estimation requires detailed 
laboratory test results.  As a result, most studies rely on 
published empirical estimates based on the lithology 
(Hoek et al. 2002).  Due to this difficulty, 
characterization of the spatial structure for the material 
constant was impossible based on the current dataset.  
Therefore, values were kept constant throughout the 
geotechnical domains and were assigned based on 
previously published estimates for the site (Table 2; 
Baczynski et al. 2011). 

Similar to the material constant (𝑚𝑚𝑖𝑖) characterization of 
the disturbance factor (𝐷𝐷) is challenging.  This parameter 
is intended to describe the degradation of the near 
surface rock mass due to blasting and unloading (Hoek 

Table 1: 𝐺𝐺𝐺𝐺𝐺𝐺 estimates for highly fragmented, crushed and/or 
decomposed zones.  Ranges were approximated by SRK 
Consulting (Australasia) Pty Ltd. using the GSI estimation 
chart of Hoek et al. (2002). 

Rock Description Assigned 𝐺𝐺𝐺𝐺𝐺𝐺 
Value 

Clay, clayey gravel or Fault with gouge 
(clay and rock fragments) 5 - 15 

Sheared rock, crumbly rock, gravel or 
non-gouge fault 10 - 20 

Intensely fractured rock or breccia, 
fragments <2 cm 15 - 25 

Heavily fractured rock, greater than four 
discontinuity sets, fragments 2-5 cm 20 - 35 

 

Table 2: Medial Hoek-Brown attributes and statistics for each 
geotechnical domain at the Ok Tedi mine site.  Data was 
declustered using the methodology described in Section 4.1.1 
prior to characterization of the summary statistics. 

Geotechnical 
Unit 

Density 
(kg/m3) mi 

Median 

𝐺𝐺𝐺𝐺𝐺𝐺 𝑈𝑈𝑈𝑈𝑈𝑈 
(MPa) 

Monzonite 
Porphyry 2550 24 51 65 

Monzodiorite 2550 24 40 46 

Endoskarn 3250 17 46 34 

Skarn 4450 17 53 76 

Darai Upper 2750 10 45 69 

Darai Lower 2740 10 47 65 

Ieru Upper 2620 7 34 64 

Ieru Lower 2620 7 53 86 

Pnyang 2660 9 44 64 

Thrust Fault 
Rock 2920 7 29 72 
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2002).  However, ambiguity exists within the 
geotechnical community in how to apply the disturbance 
factor (𝐷𝐷; Little 1999; Li et al 2011; Hoek et al. 2012; 
Lupogo et al 2014; Styles 2015).  As a result, the 
disturbance factor (𝐷𝐷) was ignored throughout this study 
and a constant value of 0.0 used.  This was conducted as 
the study was concerned with the relative effect of using 
different rock mass simulation techniques on deep-
seated failure as opposed to absolute valves which 
consider near surface degradation. 

4. METHODOLOGY 

4.1. Geostatistical Simulation 
Random field generation of the geological strength index 
(GSI) and uniaxial compressive strength (UCS) was 
conducted using sequential Gaussian simulation (SGS).  
SGS is novel within the field of open pit slope design, 
but has been utilized for a number of years within the 
geological and reservoir modelling communities 
(Dimitrakopoulos and Fonseca 2003; Esfanhani and 
Asghari 2013).  The algorithm works by sequentially 
simulating attribute values along pseudo-random paths, 
while incorporating spatial co-dependencies using 
simple kriging routines (Journel and Huijbregts 1978; 
Dowd 1992; Deutsch and Journal 1998).  The method 
used in this study involves a six step process.  The 
following section provides a brief overview of the 
approach.  For a more detailed description of the SGS 
method see Journel and Huigbregts (1978), Goovaerts 
(1997), or Nowak and Verly (2007). 

Declustering 

Prior to characterization of the spatial structure, data 
must first be filtered to remove spatial sampling 
dependencies (Prycz and Deutsch 2003).  These 
dependencies result from the non-systematic manner of 
data collection and the underlying geological processes 
which control the studied attributes.  This differs from 
classical statistical methods where sample independence 
is assumed.  To remove these dependencies spatial 
declustering techniques are utilized, which assign 
differential weighting to studied attributes based on their 
proximity to surrounding data (Chilés and Delfiner 
1999).  This is done by assigning smaller weights to 
closely spaced data, and larger weights to widely spaced 
data, ensuring that closely spaced data are not over-
represented within the dataset. 

Three main spatial declustering algorithms exist within 
the literature, namely: polygonal, cell, and kriging 
weight declustering (Isaaks and Srivastava 1989).  While 
all of the aforementioned methods are effective at 
declustering spatial data, cell declustering was chosen 
for de-biasing in this study due to its ease of use and 

ability to control the spatial scale.  The method utilizes 
the following steps (Prycz and Deutsch 2003): 

1. A grid origin is specified. 

a. Data are then overlain with a square grid 
based on the specified origin. 

b. The number of data in each cell (𝑛𝑛𝑖𝑖) is then 
tabulated and a weight 𝑤𝑤𝑗𝑗′  calculated for 
each as follows: 

  𝑤𝑤𝑗𝑗′ =
1
𝑛𝑛𝑖𝑖
𝑛𝑛
𝑐𝑐𝑖𝑖

 (2) 

 

where n is the total number of data, and 𝑐𝑐𝑖𝑖 is 
the number of cells with data. 

2. The grid origin is then shifted and step 1 repeated. 

3. Finally, the weights are averaged across all of the 
origin simulations to give an average weight for each 
datum. 

Multiple offsets are required to remove the cell 
declustering sensitivity to the grid origin.  The Ok Tedi 
dataset was declustered using this approach with a 0.01 
m offset and 1000 iterations.  A 10 m3 cell size was used 
to mimic the 10 m2 cell size arrangement used in the 
subsequent FLAC geomechanical model.   

In addition to the spatial dependencies, sampling issues 
exist with the borehole data due to the variable size of 
the geotechnical domain logging intervals.  This can 
result in an over-representation of smaller compared to 
larger sampling intervals, if the data is used without any 
bias correction.  In order to overcome this issue, 
borehole logs were re-sampled at a 0.01 m spacing, to 
prevent the under-representation of larger intervals. 

In addition to cellular declustering, a moving window, 
averaging technique was employed to obtain average 
attribute values for the 10 m2 cells subsequently used in 
the FLAC 2D model.  The method works by sub-
dividing the study region into a series of local 
neighborhoods of equal size and calculating summary 
statistics for each attribute (Isaaks and Srivastava 1989).  
This is similar to the declustering method and utilizes 
evenly spaced, square windows generated based on a 
designated grid origin.  The final result ensures that data 
are averaged to the same scale as the final 
geomechanical suimulation model, limiting the influence 
of small discrete anomalies. 

Detrending 

Following cell declustering it is important to filter the 
large-scale spatial trends due to their poor 
reproducibility by the SGS process.  This is due to the 
fact that the SGS technique reproduces random 
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phenomena assuming data conforms to the first-order 
stationary assumption (Journel and Huigbregts 1978).   
This assumption is referred to as the intrinsic hypothesis 
and states that both the mean and variance are dependent 
strictly on the data separation distance and not the 
location of the data (Matheron 1963).  If data do not 
conform to this assumption due to systematic trends, 
then trends must be defined and removed/filtered prior to 
conducting SGS (Deutsch 2002).  

Identification of spatial trends is conducted through 
exploratory spatial data analysis techniques, including: 
semivariogram analysis, average grade profiles, and 
ordinary kriging with a high nugget effect (Vieira et al. 
2010).  The use of average grade profiles is the simplest 
and often first means of trend identification.  It involves 
the examination of averaged data along one, two or three 
dimensional profiles (Isaaks and Srivastava 1989; 
Deutsch 2002).  Once identified, trends can then be 
characterized using moving average techniques, kernel 
estimation and/or ordinary kriging with a high nugget 
effect (Hallin et al. 2004; Nowak and Verly 2007). 

Following identification and characterization, the most 
common way to deal with trends is to first remove them, 
then simulate the residuals, and finally add the trend 
back to the simulated results (Vieira et al. 1983; Vieira 
et al. 2002; Blackmore et al. 2003; Jenson et al. 2006).  
This filtering process commonly employs a number of 
techniques including: subdividing the data into a series 
of domains (Deutsch 2002), linear regression with a 
correlated variable (Phillips et al. 1992) and polynomial 
trend analysis (Vieira et al. 2010). 

Analysis of the spatial trends within the Ok Tedi dataset 
identified the influence of the Gleeson fracture zone, 
which affected GSI estimates from all geotechnical units 
within the western pit wall.  To remove this trend, data 
were filtered using a constant ratio of 0.81, which is 
equal to the average decrease of 𝐺𝐺𝐺𝐺𝐺𝐺 values within the 
zone.  Residuals obtained from the filtering process were 
used for the remainder of the SGS process and the trend 
added back following simulation. 

Normal Score(Gaussian) Transformation 

The SGS algorithm is based on an assumed multi-
Gaussian system, where the spatial variance arises from 
random processes acting on a stationary mean 
(Goovaerts 1997).  In order to satisfy this assumption, 
one commonly utilized method involves a Gaussian 
transformation of the data (Journel and Huijbregts 1978).  
This is conducted to ensure data adhere to a normal 
distribution.  Under the assumption of a spatially 
constant trend, the process involves assigning a standard 
normal score to each datum such that the cumulative 
frequencies of both the normal score and attribute are 
identical (Chilés and Delfiner 1999).  This 

transformation process is conducted either graphically 
from the modelled cumulative density function (CDF) or 
by defining a transformation function using a 
polynomial expansion (Castrignanò et al. 2009). 

The Ok Tedi data were transformed by first assigning 
distribution models to the studied attributes prior to the 
normal score transformation.  This was done to smooth 
the data and have the transformation better reflect the 
likely underlying sample distribution.  Bimodal normal 
and Weibull distributions were used for the 𝐺𝐺𝐺𝐺𝐺𝐺 and 
𝑈𝑈𝑈𝑈𝑈𝑈, respectively.  Standard normal score values were 
then assigned to datum based on a piecewise 
approximation of the cumulative frequencies from the 
modelled CDFs (Figure 4).  A back-transformation 
function was also constructed allowing for conversion of 
modelled normal scores back to 𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑈𝑈𝑈𝑈𝑈𝑈 values 
following SGS simulation. 

Correlogram Analysis 

Accurate characterization of the underlying spatial 
structures is the foundation of any geostatistical analysis 
involving kriging and/or SGS (Clark 1979; Isaaks and 
Srivastava 1989).  The standard method within 
geostatistics used to characterize this structure is 
semivariogram analysis which measures the spatial 
dissimilarly vs. distance.  Since it is assumed that closely 
spaced data are more closely related than distant, 
semivariograms should display increased dissimilarity 
with distance, until the point at which no obvious 
correlation exists between data values.  At this point, the 
semivariogram reaches a sill that is comparable to the 
sample variance.  Classic geostatistical analysis within 
the mining industry typically utilizes semivariograms; 
however, alternative methods of modelling spatial 
dependency exist (i.e. covariograms and correlograms).  

 
Fig. 4. 𝐺𝐺𝐺𝐺𝐺𝐺 data were converted to normal score space using a 
cumulative frequency plot.  Normal scores were selected 
based on the matching cumulative frequencies between the 
data and a normal distribution. Examples are from the Upper 
Darai Limestone. 
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Srivastava and Parker (1989) demonstrated that 
correlograms may be more robust than semivariograms 
in the presence of preferentially sampled data.  The use 
of correlograms/covariograms also allows for greater 
continuity between the statistical modelling and 
geostatistical simulation as the kriging/SGS process 
requires the direct input of covariance vs. distance 
models (Journel and Huijbregts 1978).  For these 
reasons, spatial analysis at Ok Tedi was conducted 
utilizing correlograms. 

Correlogram analysis was conducted by first calculating 
average correlation coefficients vs. distance.  The 
algorithm incorporated declustered weights using the 
following formula: 

 𝜌𝜌(ℎ) =
1

∑∑𝑤𝑤𝑖𝑖𝑤𝑤𝑗𝑗
��𝑤𝑤𝑖𝑖𝑍𝑍𝑖𝑖𝑤𝑤𝑗𝑗𝑍𝑍𝑗𝑗 (3) 

where 𝑍𝑍𝑖𝑖 and 𝑍𝑍𝑗𝑗 are the normal score values, 𝑤𝑤𝑖𝑖 and 𝑤𝑤𝑗𝑗 
are the declustered weights and 𝜌𝜌(ℎ) is the correlation 
coefficient at the specified lag distance.  Lags were 
calculated in a logarithmic space, to give greater 

refinement of average correlation coefficients at shorter 
lag distances. 

Correlogram models were then fit to the experimental 
data for the 𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑈𝑈𝑈𝑈𝑈𝑈 using least squared regression 
techniques.  𝐺𝐺𝐺𝐺𝐺𝐺 continuity was modelled with two 
nested structure models with zero nugget effect, while 
𝑈𝑈𝑈𝑈𝑈𝑈 continuity was modelled using an exponential 
model and relatively high nugget effect (Table 3; Figure 
5 and 6). Models were constrained to reproduce a 
dispersion variance of 1.0 within the simulation area 
(Journel and Huijbregts 1978). 

Sequential Gaussian Simulation 

Inherent heterogeneities within the Ok Tedi rock mass 
system were simulated using the sequential Gaussian 
simulation (SGS) method (Dowd 1992; Nowak and 
Verly 2004; Leuangthong et al. 2011).  The method 
works by sequentially simulating a series of normal 
scores at specified grid nodes using a random walk 
process coupled with simple kriging routines (Vann et 
al. 2002).  The method was chosen due to its ability to 
reproduce continuous random variables, while also 

 
Fig. 5. Normal score correlograms for geological strength index (𝐺𝐺𝐺𝐺𝐺𝐺). 
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taking into consideration the underlying spatial structure.  
The basic steps in the algorithm are as follows (Journel 
and Huijbregts 1978): 

1. Generate a random walk sequence through the 
simulation grid nodes. 

2. Visit the first node in the sequence and simulate a 
value by a random draw from a conditional 
distribution derived from simple kriging. 

3. The simulated value becomes part of a conditioning 
set. 

4. Visit the next node in the sequence and simulate the 
studied attribute using both original and simulated 
values for conditioning. 

5. Repeat step 4 until all nodes have been visited. 

While the method preserves the spatial structure defined 
by the semivariogram, there are two main possible 
limitations of the method that need to be taken into 
consideration (Vann et al. 2002).  First, the simulation 
area must be greater than the range of the defined spatial 
dependency model, otherwise the full spatial structure of 

the model will not be preserved by the simulation.  Next, 
an adequate number of neighboring data points must be 
used during conditioning, or the simulation will heavily 
favor the short lag trend in the spatial model. 

SGS was conducted within this study using FISH 
routines written to conduct the simulation directly within 
the software package FLAC (Figure 7; Itasca 2011).  
Simulations were conducted in normal-score space and 
back-transformed to parameter space following 
geostatistical simulation, with the previously removed 
Gleeson fracture zone trend added back to the results.  
𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑈𝑈𝑈𝑈𝑈𝑈 simulations were conducted independently 
due to the poor correlation coefficient between the two 
parameters (𝑟𝑟 =  0.19). 

4.2. Geomechanical Simulation 
Geomechanical simulation was conducted using the 
Itasca software Fast Lagrangian Analysis of Continua 
(FLAC; Itasca 2011).  FLAC is a two-dimensional, 
finite-difference simulation package, which simulates 
continuum type behaviour using predefined constitutive 
criterion models (i.e. Mohr-Coulomb, Mohr Ubiquitous-

 
Fig. 6. Normal score correlograms for uniaxial compressive strength (𝑈𝑈𝑈𝑈𝑈𝑈). 
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Joint, Hoek-Brown, etc.).  During simulation, the 
material undergoes linear elastic behaviour until its yield 
point is reached, at which point it behaves as a plastic 
material, whose properties are defined by the specified 
constitutive models. 

Geomechanical simulations of the Ok Tedi pit involved 
a 2D east-west cross-section through the center of the pit 
(Figure 2; Figure 3).  Staging was not conducted as 
FLAC modelling suggested that given perfectly-plastic 
behaviour there is very little difference between staged 
and non-staged models at the Ok Ted mine site.  Results 
from the FLAC modelling indicated a factor of safety of 
1.79 and 1.78 for the staged and non-staged models, 
given medium-value deterministic simulations.  As a 
result, increased computational efficiency was achieved 
by ignoring staging and running models using the final 
excavation stage of the proposed west wall cutback.   

Failure criterion within the FLAC simulations utilized 
the integrated, modified Hoek-Brown criterion (Hoek et 
al. 2002; Itasca 2011).  The criterion is based on the 
general non-linear Hoek-Brown stress relationship: 

 𝜎𝜎1 = 𝜎𝜎3 + 𝜎𝜎𝑐𝑐𝑐𝑐 �
𝑚𝑚𝑏𝑏

𝜎𝜎𝑐𝑐𝑐𝑐
+ 𝑠𝑠�

𝑎𝑎
 (4) 

where 𝜎𝜎𝑐𝑐𝑐𝑐 is the unconfined compressive strength, 𝑚𝑚𝑏𝑏, 𝑠𝑠 
and 𝑎𝑎 are material constants related to the Geological 
Strength Index (𝐺𝐺𝐺𝐺𝐺𝐺), damage parameter (𝐷𝐷), intact rock 
constant (𝑚𝑚𝑖𝑖) and intact rock uniaxial compressive 
strength (𝑈𝑈𝑈𝑈𝑈𝑈) (Hoek et al. 2002).  The criterion is 
incorporated into the FLAC simulation code using a 

linear approximation obtained by fitting a tangential 
Mohr-Coulomb envelope to the failure criterion.  The 
approximated envelope is extended for tensile failure 
through a combination of curve matching the tangential 
Mohr-Coulomb envelope to the Hoek-Brown at 𝜎𝜎3 = 0 
and a tensile cutoff of 𝜎𝜎3 = −𝑠𝑠𝜎𝜎𝑐𝑐𝑐𝑐/𝑚𝑚𝑏𝑏 .  Dilation 
mechanics during plastic strain are simulated using a 
dilation angle (𝜓𝜓𝑐𝑐) estimated from the linear 
approximation provided by Hoek et al. (1997): 

 𝜎𝜎1 = 𝜎𝜎3 + 𝜎𝜎𝑐𝑐𝑐𝑐 �
𝑚𝑚𝑏𝑏

𝜎𝜎𝑐𝑐𝑐𝑐
+ 𝑠𝑠�

𝑎𝑎
 (5) 

One limitation of the Hoek-Brown criterion is its 
inability to characterize low 𝐺𝐺𝐺𝐺𝐺𝐺 conditions, where 
failure ceases to be controlled by translation and rotation 
of individual blocks (Hoek et al. 2002; Carter et al. 
2007).  At these low GSI values (𝑈𝑈𝑈𝑈𝑆𝑆𝑖𝑖𝑖𝑖 < 0.5 MPa) 
materials typically behave more as a “soil-like” 
substance, with behaviour best described by the Mohr-
Coulomb strength criterion (Carvalho et al. 2007).  The 
rock mass only begins to behave as a Hoek-Brown 
substance after the UCSir exceeds 10-15 MPa (Brown 
2008).  An empirically derived criterion used to describe 
the transition between these two extremes was proposed 
by Carter et al. (2008): 

 𝑓𝑓𝑇𝑇(𝜎𝜎𝑐𝑐𝑐𝑐) �
1,                            𝜎𝜎𝑐𝑐𝑐𝑐 ≤ 0.5 𝑀𝑀𝑀𝑀𝑀𝑀

𝑒𝑒
−(𝐺𝐺𝐺𝐺𝐺𝐺−0.5)2

25 , 𝜎𝜎𝑐𝑐𝑐𝑐 > 0.5 𝑀𝑀𝑀𝑀𝑎𝑎
 (6) 

which facilitates the transition from linear soil-like 
behaviour to non-linear rock mass type behaviour.  This 
relationship was incorporated into the FLAC 

 
Table 3: Normal score variogram constraints for the Ok Tedi dataset. 

Geotechincal Unit 

𝐺𝐺𝐺𝐺𝐺𝐺 𝑈𝑈𝑈𝑈𝑈𝑈 (MPa) 

Exponential Model I Exponential Model II 
Nugget 

Exponential Model 

Sill Range (m) Sill Range (m) Sill Range (m) 

Monzonite Porphyry 0.61 41 0.44 489 0.30 0.72 128 

Monzodiorite 0.49 49 0.57 434 0.38 0.66 214 

Endoskarn 0.69 38 0.32 149 0.47 0.55 97 

Skarn 0.88 52 0.14 335 0.74 0.26 81 

Darai Upper 1.00 24 - - 0.00 1.01 37 

Darai Lower 0.81 43 0.25 1000 0.54 0.50 369 

Ieru Upper 0.76 43 0.29 630 0.21 0.82 143 

Ieru Lower 0.86 88 0.18 614 0.25 0.81 318 

Pnyang 1.00 27 - - 0.21 0.82 143 

Thrust Fault Rock 0.92 40 0.10 513 0.27 0.75 107 
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simulations, by extending the modified Hoek-Brown 
criterion through a user-written FISH function. 

Spatial heterogeneity was incorporated into simulations 
using the SGS process.  This ensured that unique 𝐺𝐺𝐺𝐺𝐺𝐺 
and 𝑈𝑈𝑈𝑈𝑈𝑈 values were associated to each individual grid 
node.  These attributes were used, along with domain 
constant 𝑚𝑚𝑖𝑖 values, to assign unique Hoek-Brown 𝑎𝑎, 𝑠𝑠, 
and 𝑚𝑚𝑏𝑏 parameters to each individual node.  Disturbance 
zone (D) factors were ignored in the simulations as the 
purpose was to explore deep-seated failure. 

Elastic moduli and Poisson’s ratio were estimated 
dynamically from the randomly generated GSI and UCS 
values.  The elastic modulus (𝐸𝐸) was estimated using the 
equation (Hoek et al. 2002): 

 𝐸𝐸 (𝐺𝐺𝐺𝐺𝐺𝐺) =

⎩
⎪
⎨

⎪
⎧

  
�1 −

𝐷𝐷
2�

�
𝜎𝜎𝑐𝑐𝑐𝑐

100 10
𝐺𝐺𝐺𝐺𝐺𝐺−10
40 ,    𝜎𝜎𝑐𝑐𝑐𝑐 ≤ 100 𝑀𝑀𝑀𝑀𝑀𝑀
 

�1 −
𝐷𝐷
2�  10

𝐺𝐺𝐺𝐺𝐺𝐺−10
40 ,               𝜎𝜎𝑐𝑐𝑐𝑐 > 100 𝑀𝑀𝑀𝑀𝑀𝑀

 (7) 

while, the Poisson’s ratio (𝑣𝑣) was estimated from (Hoek 
et al. 1995): 

 𝑣𝑣 = 0.32 − 1.5
𝐺𝐺𝐺𝐺𝐺𝐺

1000
 (8) 

Groundwater conditions were incorporated into FLAC 
simulations based on groundwater modelling of the Ok 
Tedi system by Fagerlund et al. (2013) using the DHI-
WASY software FEFLOW (DHI-WASY 2013).  The 
flow model was designed to estimate the pore pressure 
distribution following the west wall cutback, through a 
transient 5-year groundwater simulation from current to 
proposed pit conditions. 

Models were assessed by conducting a shear strength 
reduction (SSR) analysis once steady-state conditions 

had been achieved (Mattsui & San 1992; Dawson et al. 
1999; Diederichs et al. 2007).  The general concept of a 
SSR analysis is to systematically reduce the shear 
strength envelope of a material until deformations are 
considered to be unacceptably large or solutions do no 
converge.  The factor by which the shear strength is 
reduced to reach this critical level the critical shear stress 
reduction factor (SRF) and is equivalent to the factor of 
safety in classical limit equilibrium analysis (Hammah et 
al. 2005; Hammah et al. 2006).  Simulations employed 
Monte Carlo sampling techniques, which allowed for 
derivation of the SRF distribution and estimation of the 
probability of failure.  Simulations were conducted using 
a constant mesh geometry.  Runtimes were 
approximately 8 days per 100 models, for a 3.4 GHz PC 
with 16 GB of RAM. 

The basic formulation of FLAC is as a plane strain 
model, which simplifies the full three-dimensional slope 
stability problem as infinitely long two-dimensional 
features (Itasca 2011).  Various studies have shown that 
this simplification can result in reduced SRF estimates 
compared to full 3D analyses, as plane strain conditions 
increase overall kinematic freedom within 2D models 
(Cavounidis 1987; Chugh 2003; Albataineh 2006; Cala 
et al., 2006, Jiang et al., 2008).  Despite these limitations 
two-dimensional analysis is still widely used throughout 
geotechnical mine design as a simplification of three-
dimensional behaviour (Hormazabal et al. 2013; 
Abrahams et al. 2015; Wen et al. 2015; Wolter et al. 
2015; Argumedo et al. 2016; Tuckey et al. 2016).  While 
geotechnical analysis in this study has applied 2D 
simplifications of the Ok Tedi pit, the same geostatistical 
methodology would also be applicable for full 3D 
analysis. 

 
Fig. 7. Single realization of the GSI attribute for end-of-mining conditions generated using the SGS method described herein. 
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4.3. Critical Area Estimation 
Recent advances in mine design practice have focused 
on an increased drive towards deeper and more complex 
designs (Read and Stacey 2009).  This has forced 
geotechnical engineers to consider methods other than 
traditional deterministic techniques, which can 
characterize the inherent uncertainty associated with 
increased mine complexity.  As a result, a renewed 
interest exists within the field towards more probabilistic 
and/or risks based practices (Steffen 1997; Terbrugge et 
al. 2006; Steffen and Contreras 2007; Steffen et al. 
2008).  This paradigm shift towards an increased focus 
on project risks requires an appreciation for both the 
probability of an unacceptable event occurring, as well 
as the associated consequences of the event (Yoe 2011).  
The first stage in understanding these consequences 
requires the ability to assess the size of a potential 
failure. 

Our study applied a novel approach to estimate the 
failure size through the use of network analysis based 
techniques.  The approach estimates the critical failure 
area through minimum distance analysis of shear strain 
rates obtained from numerical simulation.  The first 
stage of the analysis involved inverting the shear strain 
rate values to construct an inverse shear strain rate 
matrix.  Dijkstra’s (1959) algorithm was then used to 
estimate minimum paths through this matrix, for each of 
the simulations, between the pit face and rear slope crest 
(Figure 8).  This was conducted for each boundary node 
along the toe and slope of the modelled open pit.  
Minimum paths were then assessed based on average 
inverse shear strain rates, with the lowest average rate 
path determined to be the critical failure path.  Summary 
statistics were calculated for the 𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑈𝑈𝑈𝑈𝑈𝑈 along the 
identified path, which gave an indication of the critical 
shear strength within the models.  Critical paths were 
also used to estimate the size of potential failures, by 
calculating the total area between the critical failure 
surface and slope face. 

Critical path density plots were constructed from the 
estimated failure path results to give an indication of the 
critical failure surface distribution.  This involved 
estimating nodal intersection probabilities for each of the 
FLAC grid cells, measured as the probability of a critical 
path intersecting a specified node.  For example, if five 
critical paths out of the total of 100 Monte Carlo 
simulations intersected a grid node, the intersection 
probability at that node would be 0.05.  Intersection 
results were then exported to ArcGIS and ordinary 
kriging techniques utilized to interpolate a failure path 
density.  The resultant kriged surface gave an indication 
of the distribution of failure paths within the FLAC 
simulations. 

 
Fig. 8. Critical failure paths were identified using minimum 
distance analysis.  The methodology utilized Dijkstra’s (1959) 
shortest path algorithm. 

4.4. Statistical Up-Scaling 
One of the difficulties in utilizing the geostatistical 
simulation technique is the data intensive analysis that 
must be conducted to characterize and simulate the 
spatial structure.  While this can be considered an ideal 
to strive for, it is not always practical or possible due to 
both time and data constraints.  Therefore, a number of 
researchers have proposed the use of critical path 
algorithms to up-scale attribute distributions from the 
borehole to domain scale (Glynn et al. 1978; Glynn 
1979; Shair 1981; Einstein et al. 1983; Baczynski 2008).  
These algorithms work by identifying critical paths 
through synthetic rock material, using either minimum 
distance (O’Reilly 1980) or random step-path generation 
(Baczynski 2000) techniques.  Strength attributes are 
then summarized for the paths and incorporated into 
geomechanical software packages.  To test this general 
methodology, a software package was developed to 
quickly refine geotechnical domain statistics based on a 
preliminary understanding of the local heterogeneity.  
The program uses the following steps: 

1. A two dimensional simulation area is defined by a 𝑛𝑛 
by 𝑛𝑛/2 matrix, where n is equal to the user-specified 
failure length divided by a simulation cell size.   

2. 𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑈𝑈𝑈𝑈𝑈𝑈 values are assigned to the simulation 
area using the sequential Gaussian simulation 
algorithm described in Section 4.1.5.  This requires a 
user specified variogram model for both 
geotechnical attributes. 
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3. Hoek’s global rock mass strength values (𝜎𝜎𝑐𝑐𝑐𝑐′ ) are 
then assigned to each node based on the simulated 
𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑈𝑈𝑈𝑈𝑈𝑈 values, and a user-specified 𝑚𝑚𝑖𝑖 
attribute, using the equation (Hoek and Brown 
1997): 

 𝜎𝜎𝑐𝑐𝑐𝑐′ = 𝜎𝜎𝑐𝑐𝑐𝑐
�𝑚𝑚𝑏𝑏 + 4𝑠𝑠 − 𝑎𝑎(𝑚𝑚𝑏𝑏 − 8𝑠𝑠)� �𝑚𝑚𝑏𝑏

4 + 𝑠𝑠�
𝑎𝑎−1

2(1 + 𝑎𝑎)(2 + 𝑎𝑎)   (9) 

 

where 𝑎𝑎, 𝑠𝑠 and 𝑚𝑚𝑏𝑏 are the Hoek-Brown constants, 
and 𝜎𝜎𝑐𝑐𝑐𝑐 is the uniaxial compressive strength of intact 
rock. 

4. Dijkstra's (1959) algorithm is then used to calculate 
the critical paths through the simulation area, based 
on a minimum distance analysis of global rock mass 
strength values. 

5. 𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑈𝑈𝑈𝑈𝑈𝑈 values from nodes along the critical 
path are then averaged to give an indication of the 
overall strength of the weakest path through the 
simulation. 

Up-scaled 𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑈𝑈𝑈𝑈𝑆𝑆 values are then incorporated 
into geomechanical simulations and assigned uniformly 
across geotechnical domains. 

The proposed algorithm was used to conduct three 
separate simulations.  This includes: 

• The simulation of each geotechnical unit 
independently, and the 𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑈𝑈𝑈𝑈𝑈𝑈 statistics 
summarized accordingly. 

• The co-simulation of all geotechnical units into a 
single large matrix, which was then used to find an 
overall weakest path.  𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑈𝑈𝑈𝑈𝑈𝑈 values were 

then averaged for each of the geotechnical units, 
allowing for co-dependencies to be taken into 
consideration during rock mass failure. 

• Finally, co-simulation was coupled with an 
estimation of the step-path scale roughness (𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ) 
using the formula: 

 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ = atan �
𝐿𝐿𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

� (10) 

where 𝐿𝐿𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 and 𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 are the total length 
of the step-path in the vertical and horizontal 
directions.  Angles were then incorporated into 
geomechanical simulations using a dilation angle, to 
simulate the volumetric change that must occur in 
response to step-path failure.  This methodology is a 
simplification of reality and assumes that the failure 
direction is equal to the average step-path direction 
(Baczynski 2014).  Unfortunately, no alternative, 
robust methodologies exist within the geotechnical 
literature to estimate and simulate this large, slope-
scale roughness. 

5. SIMULATION RESULTS 
This section provides an overview of the results obtained 
from the geomechanical modelling.  Simulations 
employed Monte Carlo techniques with a minimum of 
100 trials conducted in each set of simulations.  This was 
done in order to obtain a distribution of the SRF, with 
reasonable estimates of the mean and standard deviation.  
The number of trials corresponds with a stabilization of 
the mean and standard deviation, within a reasonable 
simulation timeframe (Figure 9).  On average, it is 
observed that the number of trials required for 

 

 
Fig. 9. Plots of the running average a mean and b standard deviation in SRF results. Results suggest that the required number of 
simulations is inversely proportional to the degree of spatial autocorrelation. 
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stabilization of the normal distribution statistics is 
inversely related to the degree of spatial autocorrelation 
within the models. 

5.1. General Observations 
Incorporation of spatial heterogeneity into continuum 
simulations resulted in a fundamental change in the 
model behaviour.  Instead of models being able to 
indiscriminately fail anywhere in the rock mass, 
heterogeneous models restricted failure to the weakest 
areas, resulting in step-path geometries (Figure 10). This 
behavioural shift resulted in a reduction of the SRF from 
1.63 in the deterministic simulation, to an average of 
1.45 within the SGS simulations (Figure 11).  Critical 
path analysis further confirms that damage is preferential 
to the weakest areas of the rock mass in SGS models, 
with an average reduction of 14% and 32% in the critical 
path 𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑈𝑈𝑈𝑈𝑈𝑈 compared to average values in the 

western pit wall (Figure 12).  These results are consistent 
with previous research into the effects of heterogeneity 
which have observed this preferential failure behaviour, 
and reduction in strength compared to deterministic 
simulations (Griffiths and Fenton 2000; Hicks and Samy 
2002; Lorig 2009; Jefferies et al. 2008; Srivastava 2012). 

Previous two-dimensional, geomechanical simulation 
studies from the central Ok Tedi pit area estimated safety 
factors between 1.25 and 1.40, based on Slide 
(Rocscience 2014), GALENA (Clover 2010), and UDEC 
(Itasca 2014) modelling (Baczynski et al. 2011).  
Comparison of this previous work with FLAC 
simulations suggests relatively good agreement between 
the various analyses, given the varying methods for 

 
Table 4: Variation in failure area and length statistics provide an estimate of the overall deep vs. shallow seated nature of the 
estimated failure surfaces.  Trends in the coefficient of variation within the failure area and length statistics can be used as a 
quantitative estimate of the overall dispersion in failure path results. 

Model Simulation Technique 

Failure Length (m) Failure Area (m2) 

Mean Coefficient of 
Variation (%) Mean Coefficient of 

Variation (%) 

Sequential Gaussian Simulation  1453.6 10.8 2.29 x 105 34.2 

Conventional Probabilistic 1431.3 19.1 2.29 x 105 41.1 

No Spatial Autocorrelation 1403.4 4.1 2.13 x 105 16.0 

Up-Scaling: Independent 1416.3 23.5 2.33 x 105 44.0 

Up-Scaling: Dependent 1459.7 12.7 2.54 x 105 28.8 

Up-Scaling: Roughness 1508.8 14.1 2.66 x 105 29.4 
 

 
Fig. 10. Development of shear bands between the active and 
passive blocks is observed in the FLAC model.  This 
behaviour helps to facilitate movement of material along the 
lower critical failure surface. 
 

 
Fig. 11. Cumulative density plot comparing the SGS method 
with a standard deterministic analysis.  The deterministic 
analysis utilized homogeneous units, with strength attributes 
defined using medial value statistics (SRF = 1.63).  SGS 
modelling conforms to a normal distribution, with a mean SRF 
of 1.45 with a standard deviation of 0.08. 
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deriving rock mass strengths.  The slightly higher 
deterministic SRF estimated from FLAC simulations can 
be attributed to the use of medial-value rock mass 
strengths compared to “best-engineering judgement” 
used in previous work. 

5.2. Critical Path and Area Estimates 
SGS model critical path estimates suggest that failure is 
generally quasi-circular in nature, with daylighting 
typically occurring at the toe of the slope (Figure 13).  
Strain concentration in the toe is the result of a weaker 
rock mass within the Gleeson fracture zone, compared to 
surrounding rock.  However, a few exceptions to this 
failure geometry exist, where stronger than average 
properties are simulated within the fracture zone, 
resulting in either deep-seated rotational or shallow pit 
wall failures.   Deep-seated rotation failures are found to 
exhibit vertical shear banding between active and 
passive blocks, further facilitating quasi-rotational 
failure (Figure 10).  Failure paths are found to 
concentrate exclusively within the western pit wall, due 
to the increased slope heights and on average lower GSI 
values compared to the east wall (Figure 7).  Failure area 
estimates suggest a mean area of 2.3 x 105 m2, with a 
standard deviation of 7.8 x 104 m2 (coefficient of 
variation = 34%; Figure 11; Table 4). 

With the exception of the Gleeson fracture zone, failure 
does not appear to be substantially dominated by any 
other geological units (Figure 13).  This indiscriminate 

nature of failure development can be attributed to the 
sub-horizontal orientation of sedimentary layering 
dipping away from pit walls, and the similar 
geotechnical characteristics between units (Table 2).  In 
addition, thrust zones do not appear to exhibit a major 
influence on the failure mechanism, due to their 
westward dip away from the pit wall. 

 

 
Fig. 12. 𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑈𝑈𝑈𝑈𝑈𝑈 attributes are found to be reduced along 
the critical failure path compared to west wall averages.  A 
mean reduction of 14 and 32% was found in the 𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑈𝑈𝑈𝑈𝑈𝑈, 
respectively 
 

 

 
Fig. 13. Distribution of critical failure surfaces from the SGS simulations.  Daylighting is concentrated within the Gleeson fracture 
zone. The failure area is estimated to be 2.29 x 105 m2 with a standard deviation of 7.82 x 104 m2, while the failure length has a mean 
of 1,454 m with a standard deviation of 157 m. 
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5.3. Conventional Probabilistic Techniques 
Conventional probabilistic techniques assume that 
geotechnical units are spatially homogenous, with 
attributes defined by single random variables (Read and 
Stacey 2009).  In order to compare this approach with 
the SGS method, a series of conventional geomechanical 
simulations were conducted.  Models utilized 
declustered domain statistics (Section 4.1.1).  
Simulations were conducted using Monte Carlo 
techniques, whereby, two standard normal deviates were 
randomly selected for each of the geotechnical units 
(𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑈𝑈𝑈𝑈𝑈𝑈).  Normal score transformation functions 
were then used to obtain 𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑈𝑈𝑈𝑈𝑈𝑈 attributes from 
the deviates.  Simulated values were then assigned 
uniformly to all cells within the geotechnical domain.  
All other geotechnical attributes (e.g. 𝑚𝑚𝑖𝑖) were kept 
constant during the simulations (Table 2).   

Simulation results suggest that the conventional 
approach over-predicts both the SRF mean and variance 
compared to the SGS method (Figure 14).  This is 
observed by an increase in both the mean SRF (1.54 vs. 
1.45), and standard deviation (0.29 vs. 0.08), resulting in 
an over-prediction of the probability of unsatisfactory 
performance by nearly seven orders of magnitude.  
Although a conservative probability was estimated while 
using the conventional approach, this behaviour cannot 
always be assumed for all studies.  For example, while 
the conventional approach over-estimated the variance, 
increasing the spread of the distribution and leading to 
an overly conservative design, it also over-estimated the 
mean leading to an upward translation of the critical 
SRF distribution, promoting an optimistic design.  This 

results from the fact that the conventional approach 
forces failure through whatever material is simulated; 
whereas, SGS models preferentially allow failure within 
the weakest areas of the rock mass, ignoring the stronger 
areas of the simulations.  A summary of the results and 
hypothesis testing to ensure independence between the 
distributions is provided in Table 5.   

A comparison of the critical area estimates between the 
conventional and SGS methods indicates the same 
means (2.29 x 105 m2) but different coefficients of 
variation (41% vs. 34%; Figure 15; Table 4).  This 

 
Fig. 14. Comparison of SRF results for both the SGS and 
conventional approaches to geotechnical slope design.  The 
simulation results suggest that the conventional probabilistic 
approach overestimates both the mean SRF (1.45 vs. 1.54) and 
standard deviation (0.08 vs. 0.29) compared to the SGS 
method. 
 

 

 
Fig. 15. Comparison of critical failure path distributions for different modelling approaches. 
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variation can be attributed to two factors: 

• First, the conventional approach results in a 
smoother failure surface compared to the SGS 
method (Figure 15).  This is due to the 
predisposition toward step-path failures within 
heterogeneous models; whereas, the same 
phenomenon is not reproduced in homogeneous 
models, as the nodal similarity in rock mass 
properties precludes step-path development. 

• Second, in conventional probabilistic models, 
geotechnical domains exhibit a greater influence on 
failure, compared to individual cells.  This is due to 
the homogeneous assignment of random variables 
across domains.  For example, in heterogeneous 
models, the averaging of nodal shear strengths along 
the critical path reduces the influences of outlier 
deviates; whereas, conventional techniques are 
susceptible to these outliers due to the homogenous 
assignment of properties.  This issue is discussed in 
more detailed in Section 6.1. 

These two effects result in a fundamental difference in 
the underlying failure mechanics, resulting in a profound 
alteration in both the SRF statistics and failure path 
location. 

5.4. No Spatial Autocorrelation 
While conventional probabilistic techniques assume 
perfectly autocorrelated or spatially homogenous 
domains, the other extreme is to assume no spatial 
autocorrelation.  Under this paradigm, each node is 
independently simulated, ignoring the influence of 
nearby cells.  To compare SGS methods with this 
approach, a series of simulations were conducted with an 
independent 𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑈𝑈𝑈𝑈𝑈𝑈 deviate selected for each cell, 
from the declustered data. 

In comparison to the SGS approach, the non-
autocorrelated method over-predicts the mean (1.53 vs. 
1.45), while at the same time under-estimating the 

variance (0.02 vs. 0.08; Figure 16; Table 4 and 5).  Both 
effects originate from the reduction in spatial 
autocorrelation, with the increased mean a result of the 
lower likelihood of intersecting weaker rock mass 
clusters and the higher standard deviation due to reduced 
spatial aggregation.  The end effect is an optimistic 
design, with the probability of unsatisfactory 
performance under-estimated by several orders of 
magnitude. 

Critical path distribution estimates show a tighter 
confinement of failure paths within the non-
autocorrelated compared to SGS method (Figure 15).  
The observed variation can be attributed to the decreased 
clustering of weak rock mass sections in the non-
autocorrelated models due to the non-inclusion of the 
spatial autocorrelation structure.  This affects the 
location of the critical failure path, with increased 
dispersion observed within the SGS models as the failure 
path is forced to by-pass the larger clusters of competent 

Table 5: Summary statistics for strength reduction factor (SRF) results.  Hypothesis testing (t-test, F-test, Kolmogorov-Smirnov) 
used to compare sequential Gaussian approach with alternative methods.  t- and F-tests are used to compare if the mean and 
variance of the two samples originate from the sample population.  The Kolmogorov-Smirnov method tests the null hypothesis that 
the samples are drawn from the same population.  All hypothesis testing suggests a statistically significant difference between the 
sequential Gaussian and alternative approaches with greater than 99% confidence. 

Method Mean Std. Dev. n Std. Error 
Hypothesis Test p-Valve 

t-Test F-Test Kolmogorov-Smirnov 

Sequential Gaussian 1.45 0.08 100 0.01 - - - 
Zero Autocorrelation 1.53 0.02 100 0.00 <0.01 <0.01 <0.01 

Conventional 1.54 0.29 228 0.02 <0.01 <0.01 <0.01 
Up-Scaling: Independent 1.35 0.24 100 0.02 <0.01 <0.01 <0.01 
Up-Scaling: Dependent 1.33 0.17 100 0.02 <0.01 <0.01 <0.01 
Up-Scaling: Roughness 1.33 0.22 100 0.02 <0.01 <0.01 <0.01 

 

 

 
Fig. 16. Incorporation of rock mass strength heterogeneities 
results in an increased dispersion in the SRF compared to non-
autocorrelated models.  The zero autocorrelation method is 
found to overestimate the mean SRF (1.53 vs. 1.45), while at 
the same time underestimating the standard deviation (0.02 vs. 
0.08), when compared to the SGS method. 
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rock.  In comparison, the non-autocorrelated models 
suppress cluster development resulting in a reduction in 
critical path deviations.  The discrepancy between the 
models illustrates the need to properly define the spatial 
structure, as even though both methods have the same 
attribute statistics, differences in the spatial structure 
drastically changes the underlying failure path 
mechanics. 

5.5. Statistical Up-Scaling 
As an alternative to geostatistical simulation, a number 
of researchers have proposed step-path algorithms to up-
scale geotechnical domain statistics (Glynn et al. 1978; 
Glynn 1979; O’Reilly 1980; Shair 1981; Einstein et al. 
1983; Baczynski 2000; Baczynski 2008).  The step-path 
approach was tested through the development of a 
software package that relies on minimum distance 
analysis to up-scale geotechnical attributes (Section 4.4).  
The method calculated summary statistics for the GSI 
and UCS along critical paths through theoretical rock 
material.  Up-scaled geotechnical attributes were then 
incorporated into FLAC, and a series of 100 trials 
conducted for each of the simulations. 

Results of the FLAC models suggest that the up-scaling 
approaches under-estimate the mean SRF, when 
compared to the SGS method, by approximately 0.11 
(Figure 17; Table 4 and 5).  The up-scaling approach 
also drastically over-estimates the SRF variance, 
resulting in an over-estimation of the probability of 
failure by approximately seven orders of magnitude.  
These discrepancies can be attributed to differences in 
the failure mechanics between the two models.  For 

example, failure within the up-scaled models is found to 
be preferentially controlled by the weakest domains; 
whereas, SGS models are predisposed to failure in the 
weakest cells (Figure 15). 

6. DISCUSSION 

6.1. Scale-Dependency Issue 
Geomechanical simulations have highlighted the 
discrepancies between conventional probabilistic and 
spatially heterogeneous models.  Compared to 
heterogeneous models, conventional geotechnical slope 
design under-estimates both the SRF mean and variance.  
Discrepancies arise due to the method with which 
geotechnical data is processed and whether or not 
autocorrelation is taken into consideration (Haining 
2003).  Autocorrelation results in two intertwined 
secondary issues which complicate the use of 
conventional probabilistic methods and invalidate the 
independence assumption required to use classical 
statistical approaches.  These issues include scale-effects 
associated with spatial data aggregation, and the 
preferential accumulation of strain within weaker areas 
of the rock mass (Gehlke and Biehl 1934; Haining 2003; 
Jefferies et al. 2008; Lorig 2009).   

The spatial data aggregation issue arises from scale 
dependencies in the sample variance statistic due to a 
spatial averaging effect, with the variance typically 
demonstrating an inverse relationship with the scale of 
study (Gehlke and Biehl 1934; Journel and Huijbregts 
1978; Isaaks and Srivastava 1989; Deutsch 2002; 
Haining 2003).  The classic geological example of this 
phenomenon is the distribution of copper grades at the 
grain vs. hand sample scales.  At the smaller of the two 
scales, samples exhibit a larger degree of variance, with 
copper distributions split into two distinct populations 
(e.g. copper abundant and deficient grains).  However, as 
the scale of study increases, so too does the amount of 
spatial aggregation.  The end effect is a reduction in the 
sample variance, as results at the hand sample scale 
reflect an average of copper abundant and deficient 
grains.  While copper grade distributions provide the 
classic example of this phenomenon, the behaviour is 
common with other geological attributes.  The key 
importance for geotechnical slope design studies is that 
the variance at the geotechnical domain scale likely 
differs from the variance observed at the data collection 
scale (Isaaks and Srivastava 1989; Deutsch 2002).  This 
presents an important issue for practicing geotechnical 
engineers, as classic statistical methods ignore this 
phenomenon (Harr 1996; Duncan 2000; Wiles 2006; 
Nadim 2007). 

The second issue that arises is the preferential 
accumulation of strain within weaker areas of the rock 

 

 
Fig. 17. Comparison of SRF results for the SGS and critical 
path, upscaling methods. The results suggest the critical path 
algorithms fail to fully capture the effects of spatial 
heterogeneity on geomechanical models. Upscaling results 
suggest a mean SRF of 1.35, 1.33 and 1.33, with a standard 
deviation of 0.24, 0.17 and 0.22 for the independent, 
dependent and roughness methods, respectively. 
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mass.  This preferential behaviour results in a drift in the 
mean during shifting scales of study (Jefferies et al. 
2008; Lorig 2009).  The behaviour is demonstrated in 
classical geotechnical slope design by the development 
of step-path failures, whereby the rock mass fails within 
the weakest rock (Jennings 1970; Einstein et al. 1983).  
In such a case, the global rock mass strength is the 
summation of shear and/or tensile strengths along this 
critical path, and not the rock mass as a whole (Glynn 
1979; O’Reilly 1980; Baczynski 2000).  The end result 
is a mean strength along the failure path which is lower 
than the mean strength of the entire mass.  Similar 
effects are observed in groundwater systems, where 
scale-effects arise from preferential flow along high 
hydraulic conductivity (𝐾𝐾) units, resulting in an upward 
drift in the mean away from theoretical multi-log-normal 
predictions (Sánchez-Vila et al. 1996).  In addition to 
statistical effects, discrepancies in the failure dynamics 
can occur when heterogeneity is explicitly excluded, as 
conventional approaches result in an over-smoothed 
failure surface compared to SGS simulations (Figure 
15).  This can lead to underlying errors, as the behaviour 
of conventional models are disproportionately controlled 
by the uniformly applied geotechnical domain attributes, 
as opposed to step paths along locally weak rock mass 
sections. 

These data aggregation and preferential strain issues 
result from underlying scale dependencies in the 
geotechnical attributes.  Their spatial behaviour is 
commonly misrepresented in geotechnical design studies 
which assume that the statistics of studied attributes is 
the same at both the borehole and domain scales.  
However, this research has shown that this can cause 
erroneous SRF/FOS predictions compared to 
geostatistical approaches (Figure 14).  This presents a 
fundamental issue for geotechnical slope design as 
billions of dollars are spent annually on designs which 
apply conventional approaches.  In comparison to 
traditional design, the utilized SGS method curtails the 
scale dependency issue through the imposition of a 
degree of controlled spatial heterogeneity on the random 
field.  The spatial structure is imposed through the use of 
variograms, which allow for preservation of the sample-
scale variance, while at the same time more accurately 
representing the large-scale, system variance (Journel 
and Huijbregts 1978).  The final result is a more realistic 
distribution in predicted SRF/FOS results. 

6.2. Step-Path Estimation Algorithms 
In order to circumvent the aforementioned scale 
dependency issue, a number of studies have proposed 
the use of critical path algorithms to up-scale attribute 
distributions from the borehole to domain scale (Glynn 
et al. 1978; Glynn 1979; O’Reilly 1980; Shair 1981; 
Einstein et al. 1983; Baczynski 2000; Baczynski 2008).  

The applicability of these methods was tested within this 
study with results suggesting that the critical path 
approach fails to fully account for the up-scaling issues, 
and may impart new uncertainties into the analysis 
(Figure 17).   Specifically, failure development within 
the up-scaled models is found to be controlled by the 
weakest domains; whereas, failure within the 
heterogeneous models occurs through preferential failure 
along the weakest nodes.  The overall effect is an over-
smoothing of the failure surface within up-scaled models 
and a reduction in the large-scale roughness (Figure 15). 

Attempts to correct for this discrepancy have been made 
through the calculation of a large-scale roughness factors 
(Baczynski 2000).  However, difficulties arise in 
calculating the roughness angle as the dominant failure 
direction often deviates from the average step-path 
angle, and deep-seated failures can produce quasi-
circular geometries resulting in deviating failure 
directions throughout the sliding mass (Baczynski 2014).  
As has been shown in this study, simplified calculations 
of the step-path scale, roughness are currently unable in 
reproduce the larger-scale step-path behaviour when 
compared to explicit geostatistical simulation of the 
spatial heterogeneity.  As a result, the use of step-path 
algorithms remains problematic until/unless a robust 
method for estimating up-scaled, step-path, roughness 
coefficients is developed. 

6.3. Continuum Mechanics and Data Aggradation 
Geomechanical simulation models used throughout this 
study relied on the use of the Hoek-Brown criterion 
(Hoek et al. 2002).  However, the method has been 
criticized due to difficulties in applying it to 
inappropriate conditions (Brown 2008; Mostyn and 
Douglas 2000; Douglas and Mostyn 2004; Carter et al. 
2007; Carvalho et al. 2007; Carter et al. 2008).  One of 
the main issues is the definition of a homogenization 
scale, as fracture systems research has suggested that 
many systems display fractal spatial distributions, which 
preclude the existence of such a scale or representative 
elementary volume (REV; Bonnet et al. 2001, 
Mandelbrot 1982; Davy et al. 1990; Davy et al. 1992; 
Sornette et al. 1993).  The REV concept is further 
complicated by the discrete nature of geotechnical 
domains, as required scales to achieve an appropriate 
REV may exceed domain scales (Figure 18). 

Comparisons of failure mechanisms from continuum 
modelling in our study with previous discontinuum 
modelling at the Ok Tedi site suggest a similar shear-
dominated, rotational failure develops using both model 
approaches (Baczynski et al. 2011).  Such behaviour can 
be attributed to the dense, chaotic fracturing at the Ok 
Tedi site, which seems to satisfy the primary Hoek-
Brown assumption of the rock mass failing from 
translation and/or rotation of individual blocks (Hoek 
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1983).  Despite this, problems may still exist with the 
Hoek-Brown approach as a result of the spatial 
aggregation utilized during numerical modelling.  
Specifically, data was averaged over 10 m3 bins, 
equivalent to the numerical mesh grid size (Section 
4.1.1).  The problem with this approach is that it 
assumes that strain is evenly distributed at the sub-nodal 
scale.  However, as was discussed in the preceding 
sections, this assumption is invalid due to preferential 
failure of a rock mass within its weakest areas.  These 
preferential strain accumulations result in the scale 
effects commonly observed in rock mechanics problems, 
whereby the compressive strength of a sample is found 
to be inversely correlated to the sample size (Johns 
1966; Bieniawski 1967; Pratt et al. 1972; Hoek and 
Brown 1980; Bieniawski 1984; de Vallejo and Ferrer 
2011).  In effect, the SGS models accurately reproduce 
spatial heterogeneities at the nodal scale, but fail to 
continue the heterogeneity modelling down to the sub-
nodal scale.  This imparts an unknown degree of 
uncertainty into the simulations, which requires further 
research.  As a result, caution is required when 
extrapolating SRF estimates for risk and/or stability 
analysis purposes.  Despite this limitation, the general 
conclusions of this study are still considered valid, as the 
approach was directed at investigating the variation 
between the methods as opposed to specific SRF values. 

7. CONCLUSIONS 
The field of geotechnical slope design is currently in a 
state of flux.  Open pit mine operations are progressing 
towards ever deeper targets in response to the depletion 
of near surface deposits (Read and Stacey 2009).  This 
increases both costs and uncertainties, forcing 
geotechnical engineers to reconsider traditional 
deterministic design techniques (Harr 1996; Duncan 
2000; Wiles 2006; Nadim 2007).  In the face of these 
issues, probabilistic design techniques represent an 
attractive alternative, as uncertainties can be quantified 
directly within the framework of risk and/or decision 
analysis (Steffen 1997; Terbrugge et al. 2006; Steffen 
and Contreras 2007; Steffen et al. 2008).  However, 
conventional probabilistic design techniques typically 
utilize a discrete geotechnical domain approach, with 
attributes defined by spatially constant, random variables 
(Read and Stacey 2009).   This can lead to fundamental 
underlying problems, as spatial dependencies invalidate 
the sample independence assumption required to use 
classical statistical approaches, and lead to scale effects 
due to spatial data aggregation and preferential strain 
accumulation issues (Gehlke and Biehl 1934; Journel 
and Huijbregts 1978; Isaaks and Srivastava 1989; 
Deutsch 2002; Haining 2003; Jefferies et al. 2008; Lorig 
2009).  Our research on a large open pit slope has 
demonstrated that failure to consider spatial 
dependencies in a dataset can result in a fundamental 
difference in the predicted SRF/FOS results, which is 
consistent with previous research (Figure 14; Griffiths 
and Fenton 2000; Hicks and Samy 2002).  Discrepancies 
results from an underlying difference in how the 
methods handle spatial dependencies inherent in 
geotechnical databases.  In the case of geostatistical 
approaches, spatial dependencies are accounted for 
through use of variograms, whereas conventional 
probabilistic approaches ignore these inherent 
dependencies and falsely assume data independence.  
This observation is of specific relevance to geotechnical 
design studies, as billions of dollars are invested 
annually, using conventional methods that rely on this 
incorrect assumption of data independence to formulate 
probabilistic distributions.  Instead, the rigorous 
application of geostatistical theory is required which 
explicitly accounts for spatial dependencies inherent in 
geotechnical data collection.  Although the proposed 
approach is more data intensive and difficult to apply, 
the inability to account for spatial dependencies in a 
dataset may lead to systematic errors, invalid results, and 
poor designs. 

 

 

 

 
Fig. 18. The discrete nature of geotechnical domains makes 
the definition of a REV within fracture systems difficult, if not 
impossible.  This is due to the difficulty in stabilizing 
descriptive attributes at sample volumes smaller than the 
domain scale. 
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