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Abstract 
Simulation of tracer response curves in waste rock systems can be difficult using conventional 
numerical techniques, due to the presence of local heterogeneities.  Instead, alternative methods 
are required that can explicitly handle the inhomogeneous nature of flow.  Such an approach is 
presented herein that couples sequential Gaussian simulation with Bayesian inference using a 
Markov Chain.  Results show that complex tracer behaviour can be reproduced using simple, 
spatially conditioned, Markov Chains.  Additionally, external conditioning routines are found to 
be more efficient in controlling Markov state transition compared to random resampling or 
collocated cokriging. 
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Introduction 
The basic conceptual model for backfill into a previously mined out open pit is that of a relatively 
homogeneous, coarse-grained, granular media with some degree of anisotropy in hydraulic 
conductivity due to the mechanics of the backfill process. While this model is a reasonable 
starting point, flow behaviour in real world systems is often more complex due to the variability 
in dump emplacement. 

Much like depositional facies in a sedimentary environment, backfilled pits display particle 
segregation resulting in interbedded layers forming along the angle of repose.  The degree of 
segregation is a direct result of the style of dump emplacement, which is affected by such factors 
as lift height, initial gradation, and placement technique (BCMWRPRC 1991).  Generally, the 
greater the lift height, the more segregation occurs with larger particles displaying longer run-
outs.  The end result is a fining upward sedimentary sequence, which can have a relatively 
simple or highly complex spatial distribution. 

Characterization of the hydraulic behaviour of such backfilled systems often occurs through 
multi-stage field programs.  Early stage testing may involve slug and/or pump testing, which 
while providing larger-scale equivalent hydraulic properties, is often unable to deconvolute the 
intricacies of highly heterogeneous flow systems.  This is where subsequent stage tracer testing 
can be useful, as it can confirm the presence of and help delineate heterogeneities in the backfill. 

Recent bromide tracer testing in such a backfilled dump has shown the heterogeneous nature of 
such systems, with tracer behaviour displaying a highly complex plume distribution (Figure 1).  
Reproduction of such behaviour proved difficult using conventional numerical modelling 
techniques, which were unable to reproduce the plume using simple conceptual model setups.  
Instead, a coupled Bayesian inference and geostatistical approach was applied (Irving and 
Singha 2010; Mariethoz et al. 2010). This involved construction of a random series of 
heterogeneous hydraulic conductivity (𝐾𝐾) and porosity (𝑛𝑛) fields, which were assessed based on 
their conditional probability of reproducing the measured bromide concentration curves. 

Field Observations 
Tracer testing was conducted using a dipole configuration, whereby water extracted from the 
pumping well was directly reinjected into the injection well forming a continuous loop (Figure 
1).  Water was cycled at a constant rate of 546 m3/day.  During the first 22 days of the test, 
bromide tracer was added to the reinjected water at an average concentration of 34.7 mg/L.  
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This was followed by passive cycling and monitoring for an additional 87 days (i.e. water from 
the pumping well was re-injected without any bromide added).  Bromide concentration curves 
were monitored at the pumping well (PW) and four waterloo sampling ports (WP1-4). 

Results of the tracer test showed appreciable amounts of tracer only in the deepest part of the 
flow system (PP and WP4), while the upper most zones nearest the injection horizon displayed 
minimal (WP2) to no response (WP3 and WP4).  This odd response behaviour was unexpected, 
and suggested that the dump emplacement is far more heterogeneous then pre-test 
homogeneous models suggested. 

Methodology 
Numerical Groundwater Simulation Model 

Numerical groundwater modelling has been completed using the modelling software FEFLOW 
(DHI 2016).  A two-dimensional planar model was setup through the current backfilled pit 
(Figure 1).  Groundwater flow behaviour was modelled assuming saturated, steady-state 
conditions; while transport modelling was conducted under transient conditions.  Left and right 
edges of the model were set as constant head boundaries.  The top and bottom boundaries were 
simulated using no-flow (zero-flux) conditions.  Dipole pumping was simulated using two 
coupled constant flux boundaries with the rate adjusted to match the measured head observed 
in the injection well.  Active tracer injection was simulated using a constant concentration 
boundary set to an average valve of 34.7 mg/L for the first 21.5 days.  This was followed by 
linking of the pumping and injection well concentrations to simulate passive dipole cycling for 
the remaining 87.5 days. 

Geostatistical Simulation 

Random generation of the heterogeneous hydraulic conductivity and porosity fields were 
conducted using sequential Gaussian simulation (SGS; Deutsch and Journel 1998).  The approach 
works by sequentially generating random variates within a set of grid nodes based on Gaussian 
deviations from a stationary mean.  Heterogeneity is imposed through the conditioning of local 
probability distributions using simple kriging routines, with the heterogeneous structure 
defined by vario- and/or correlograms.  The sequential generation sequence is randomized 
between trials using a random walk.  The end result is a random realization of a continuous 
variable which matches the underlying spatial structure of said variable. 

 
Figure 1 Two-dimensional groundwater flow setup in FEFLOW.  Simulated bromide plume and random K 
field are presented for the highest probability model generated using the external conditioning approach. 
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Bayesian Markov Chain Monte Carlo 

Estimation of the in-situ heterogeneity structure was conducted using Bayesian inference, with 
FEFLOW models assessed based on their conditional probability of reproducing the measured 
bromide behaviour.  Specifically, models were assessed using Bayes’ Theorem: 

 𝑃𝑃(𝑥𝑥|𝜃𝜃) =
𝑃𝑃(𝜃𝜃|𝑥𝑥)𝑃𝑃(𝑥𝑥)

𝑃𝑃(𝜃𝜃)  Equation 1 

where: 

• 𝑃𝑃(𝑥𝑥|𝜃𝜃) is the posterior distribution or conditional probability that the model state (i.e. 
heterogeneous random field) is representative of the tracer response behaviour. 

• 𝑃𝑃(𝜃𝜃|𝑥𝑥) is the conditional probability that the model matches the observed tracer 
behaviour given the simulated model state (i.e. random field). 

• 𝑃𝑃(𝑥𝑥) is the prior probability, or one’s belief before conducting the modelling that the 
simulated heterogeneous structure is representative of the in-situ conditions. 

• 𝑃𝑃(𝜃𝜃) is a normalization constant related to the modelling errors. 

In practice, the direct solution of Bayes’ Theorem is often difficult, owing to the calculation of 
𝑃𝑃(𝜃𝜃) which requires prior knowledge of model errors.  Instead, it is often easier to approximate 
the equation using a Monte Carlo solution, such as Markov Chain Monte Carlo (MCMC).  The 
approach works by setting up a Markov chain, which has an equilibrium distribution that 
matches the desired posterior distribution (𝑃𝑃(𝑥𝑥|𝜃𝜃)).  One method of setting up such a chain is 
the Metropolis algorithm (Metropolis et al. 1956).  The approach involves a five step procedure: 

1. Initialize a random heterogeneous state (xold). 

2. Randomly generate a new state (xnew) from the old state (xold) based on a symmetric, 
transitional jump function (typically a Gaussian distribution). 

3. Calculate the acceptance ratio (α): 

 𝛼𝛼 = min �1,
𝐿𝐿(𝜃𝜃|𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛)𝑃𝑃(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛)
𝐿𝐿(𝜃𝜃|𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜)𝑃𝑃(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜)

� Equation 2 

4. Randomly select a uniform value (𝑢𝑢) between 0 and 1: 

a. If 𝑢𝑢 ≤ 𝛼𝛼 move to the new state (𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛), else 

b. If 𝑢𝑢 > 𝛼𝛼 remain in the current state (𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜) 

5. Restart the algorithm at step 2. 

In order to limit the impact of the random starting position, an initial N states are discarded at 
the start of the sequence (known as the burn-in period), while the algorithm converges on the 
high probability space.  Once the burn-in period is complete, samples are saved every 𝑁𝑁 steps, 
with interstitial steps discarded to limit autocorrelation effects.  The process is repeated until 
the desired sample size is reached. 

Misfit Function 

Definition of a misfit function is required in order to assess the conditional likelihood that the 
current model state (i.e. random field) is representative of the in-situ groundwater conditions.  
This was conducted by assuming independent, normally distributed data errors, resulting in the 
conditional likelihood being defined by (Mosegaard and Tarantola 2005):  

 𝐿𝐿(𝜃𝜃|𝑥𝑥) = exp �−
∑(𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜)2

𝜎𝜎2 � Equation 3 

where 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 are the calculated and measured response curves, and 𝜎𝜎2 is the standard 
deviation in the data errors. 
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Combined Model Structures 

The above methodology was incorporated into FEFLOW using IFM programming (Figure 2).  
Transition between Markov states was controlled using three separate algorithms.  These 
include: 

1. Random resampling: during each iteration of the Markov chain a random subset of the 
model elements were regenerated using the SGS code (Irving and Singha 2010). 

2. Collocated cokriging: the new state was cokriged from the previous state, with the 
transition controlled using a correlation coefficient (Xu et al. 1992). 

3. External conditioning: each element was treated using a unique set of variables (K, n), 
with transition between the states controlled using individual Gaussian jump functions.  
Spatial conditioning is imposed by conditioning the Gaussian jumps based on the jumps 
of nearby neighbours using SGS.    

In a well constrained Markov chain the jump size should be optimized to ensure efficiency in the 
model solution.  A chain with a jump that is too small will mix poorly, and be inefficient at 
converging on the high probability space; while too large of a jump will have a poor acceptance 
rate again resulting in poor mixing and convergence.  Roberts et al. (1997) showed that for 
single-variate Gaussian solutions the target acceptance rate should be 50% to optimize chain 
convergence towards high probability space.  This drops to 23% for N-dimensional Gaussian 
distributions. 

Prior Information 
Before initiating the Markov Chain process, the SGS generator needed to be setup to allow for 
construction of Markov states.  This was done by reviewing field data, published literature, and 
best engineering judgement, in order to define the input parameters.  

Backfill sedimentary sequencing was simulated using three key parameters: bedding angle, 
anisotropy factor, and spatial continuity.  The bedding angle was set to the angle of repose (35o).  
Due to the relatively unknown nature of the anisotropy factor and spatial continuity, uniform 
priors were assumed, which varied between 1x to 3x and 2 to 20 m respectively. 

Prior porosity information was available from downhole nuclear magnetic resonance (NMR) 
testing in the observation well.  Results of the NMR analysis indicate a mobile water fraction 
(effective porosity) of 0.276, with a standard deviation of 0.08. 

Large-scale hydraulic conductivity estimates were available from a prior pump test conducted in 
the injection well.  Estimates of the hydraulic conductivity indicate a mean valve of 436 m/d.  

 
Figure 2 Overview of model structure using external conditioning approach. 
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Small-scale variability in the conductivity was estimated from NMR results, which suggest a log-
transformed standard deviation between 0.35 to 1.71 orders of magnitude.  A vertical trend in 
the hydraulic conductivity was simulated to reproduce grain size segregation associated with 
dump emplacement.  The trend was assigned based on a uniform distribution between one and 
three orders of magnitude across the saturated thickness. 

Stochastic Results and Discussion 
The three tested Markov transition algorithms showed varying degrees of success in converging 
on the high probability space.  Initial results using the random resampling approach showed 
promise during the initial burn-in period, with acceptance rates near 30%; however rates soon 
dropped below 2% as the model misfit approached 14,000 (mg/L)2 (Figure 3).  The percentage 
of the model resampled was varied between 90 and 99%, but acceptance rates did not improve 
significantly, likely due to the small number of elements resampled during each iteration. 

Collocated cokriging routines were found to have improved convergence compared to random 
resampling, with models converging on a higher probability space after an initial 24 hour run 
(4,000 mg/L2; Figure 3).  The improved convergence was likely associated with the complete 
resampling of all elements between Markov states.  Correlation coefficients were varied between 
0.8 and 0.999, with improved acceptance rates (40%) found when using higher correlation 
coefficients (0.999).  Convergence was found to flat-line near a misfit of 4,000 mg/L2 with 
minimal model improvement during subsequent runs. 

The final attempted transition algorithm, external conditioning, was found to be the most 
efficient at convergence on the high probability space.  Model misfits were found to drop from an 
initial starting value 26,000 mg/L2 to a minimum of 1,700 mg/L2 after less than 12 hours, or 
3,000 model runs. Subsequent simulations showed further convergence with a minimum value 
of 1,000 mg/L2 after 25,000 trials (Figure 1, Figure 3).  Acceptance rates remained high even in 
higher probability space, with rates near 27%.  Gaussian jumps were set to 1.3% and 13% of the 
standard deviation in the K and n parameters, respectively. 

As a validation step, random fields generated using the external conditioning algorithm were 
compared to distributed temperature sensing (DTS) field results.  DTS tests allow for flow-path 
characterization by heating a well column and then monitoring the recovery to baseline (Banks 
et al. 2014).  Areas of higher hydraulic conductivity are more difficult to heat and recover 
quicker compared to lower conductivity zones.  A visual comparison between the DTS and 
Bayesian-MCMC results indicate a reasonable agreement between the two independent methods 
(Figure 4). 

Conclusions and Future Work 
Heterogeneity is an intrinsic property of waste rock systems; however, such attributes are 
typically overlooked when systems are modelled using larger-scale equivalent porous media 
properties.  While this is often appropriate for calibration of models to pump tests, it can fail to 

 
Figure 3 Comparison of highest probability models with observational data. 
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recognise the nuances of waste rock deposition.  Bromide response behaviour presented herein 
has shown that local-scale flow dynamics can be heavily influenced by this depositional history.  
Early results have shown that the coupling of Bayesian-MCMC approaches with geostatistical 
routines can provide an effective approach to simulate such heterogeneity.  Additionally, the 
approach was found to have improved convergence when Markov state transition was 
controlled by external conditioning routines, as opposed to random resampling or collocated 
cokriging.  Research remains on-going with additional model runs being conducted to further 
explore the probability space. 
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