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1 INTRODUCTION 

By its nature, rock engineering is subject to a great 
deal of uncertainty and variability (Hadjigeorgiou and 
Harrison, 2011; Brown, 2012; Contreras and Ruest, 
2016), which need to be taken into account in the de-
sign process and in the management of rock-related 
risks.  
Variability is a property of nature and is a measure of 
the change in rock mass characteristics over time and 
space.  The variability can be described with statistics 
and the probabilities related to variability can be in-
terpreted as a frequency of occurrence.  Uncertainty 
is a state of mind and is a product of our lack of 
knowledge, which can be reduced with more meas-
urement and improved understanding. Probabilities 
related to uncertainty are best interpreted as a de-
greeofbelief. Uncertainties include measurement er-
rors, insufficient data, sampling bias, stress state un-
certainty, and model uncertainty.  The understanding 
of variability can be improved by collecting more 
data and improving the quality of data through train-
ing and quality control. Stress and model uncertainty 
remain a challenge in rock engineering. Some degree 
of subjective engineering judgement will therefore al-
ways be required in geotechnical design. 
 
The philosophy provided by (Vick, 2002) distin-
guishes between a ‘relative frequency approach’ and 
a “subjective, degree of belief approach” is useful: 

Relative frequency approach:  The probability of an 
uncertain event is its relative frequency of occurrence 
in repeated trials or experimental sampling of the out-
come. 
Subjective, degree of belief approach:  The probabil-
ity of an uncertain event is the quantified measure of 
one’s belief or confidence in the outcome, according 
to their state of knowledge at the time it is assessed. 
Vick (2002) argues that both these interpretations of 
probabilities are equally valid and that one cannot af-
ford to ignore either interpretation in geotechnical en-
gineering.  Baecher & Christian (2003) note that the 
frequency and belief co-exist in our modelling en-
deavours and that calculated probabilities in geome-
chanics are generally not the one or the other, but a 
mixture of both.  
Deterministic methods have been applied in rock en-
gineering and designs are usually evaluated by deter-
mining a safety factor.  Often, mean values are used 
for the rock mass input parameters.  A safety factor 
(SF) of 1.5 or 2.0 usually caters for the inherent un-
certainty and variability.  However, if the uncertainty 
and variability are high then the design may not be 
adequate.  Conversely, the design may be overly con-
servative and expensive if the variability is low.  It is 
therefore important to consider uncertainty and vari-
ability and to apply them in design. 
Many powerful methods for evaluating uncertainty 
and probabilistic analysis of geotechnical stability 
have been developed over the years (Rosenblueth 
1975, 1981, Harr 1996, Baecher & Christian 2003, 
Bradley 2007, Brown 2012, Kroese & Rubinstein 
2012, Contreras & Ruest 2016). These methods of 
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analysis have been applied to the design of rock 
slopes (Terbrugge et al. 2006, Tapia et al. 2007, Stef-
fen et al. 2008, Wesseloo & Read 2009, Chiwaye & 
Stacey 2010, & Contreras 2015), pillars, stope spans, 
access development, support, and other aspects of 
rock engineering (Joughin, Swart & Wesseloo 2000, 
Valley, Kaiser & Duff 2010, Lü & Low 2011a, b, 
Joughin et al. 2012a, 2016, Lü, Chan & Low 2012, 
Abdellah, Mitri & Thibodeau 2014, Langford & 
Diederichs 2015). 
Despite this, these methods are not widely applied in 
underground mining geotechnical design and deter-
ministic methods are generally preferred.  This is 
partly due to the additional effort required for proba-
bilistic analyses and a lack of tools to make such anal-
ysis easily achievable on a mine site.  Another stum-
bling block seems to be the lack of prescribed 
‘acceptable probabilities of failure (PF)’ which serves 
as design acceptance criteria. 
Universal acceptance criteria are not useful because 
the probability of failure, on its own, has little mean-
ing within the mining context as the important factor 
that needs to be managed is not failure, but risk. In 
mining, failure with limited adverse consequence is 
preferable to unnecessary stability at a high cost. 
Hence, a risk-based design approach needs to be ap-
plied, where the acceptance criteria are defined in 
terms of risk and therefore include probabilistic as-
sessment and risk evaluation components. The risk 
evaluation process therefore requires some practical 
understanding of the potential consequences. 
The potential risk of injuries and fatalities can be de-
termined by developing an exposure model, which 
considers the temporal and spatial coincidence of per-
sonnel with an incident such as a rockfall or a rock-
burst.  Economic consequence models can also be de-
veloped to evaluate the potential losses due to 
production disruptions, rehabilitation of damaged ex-
cavations, or repairs to damaged equipment.  Practical 
mitigation measures can be implemented to further 
reduce the risk, and these models can be used to eval-
uate the residual risk. 
Acceptance criteria then need to be defined in terms 
of safety and economic risk.  Corporate risk matrices 
can be used for assessing the risk in terms of the prob-
ability and consequence. International safety bench-
marking and safety milestones should be considered. 
Much of this work was previously published in 
(Joughin 2017) and will be published in greater detail 
in three book chapters later this year (Joughin et al. 
2018, Wesseloo & Joughin 2018 as well as Wesseloo 
& Muaka 2018). 
 
 
 

1.1 Input data 

Rock mass characteristics and intact rock strength 
properties should be collected for the probabilistic 
analyses.  Increasing the amount and quality of data 
will improve the confidence in the understanding of 
the natural variability. It is important to note that this 
usually increases the variability, as the sample size 
becomes more representative of the entire population. 
As a result, there is often a tendency to underestimate 
the natural variability, when there is limited data and 
it may then be necessary to increase the variability us-
ing experience and judgement. Confidence intervals 
of the observed mean (typically 95%) provide an es-
timate of the range of the true population mean.  The 
use of confidence intervals to validate the data sets 
has been discussed by various authors (Baecher & 
Christian 2003; Hadjigeorgiou & Harrison 2011 as 
well as; Contreras & Ruest 2016). Unconventional 
methods, such as Bayesian statistics may provide a 
better way of quantifying uncertainty (Brown 2012, 
Contreras & Ruest 2016, but applications are still be-
ing developed in geotechnical engineering and tools 
are not yet readily available. Experience and engi-
neering judgement are essential. 
Probability density functions provide useful represen-
tations of data for probabilistic analyses.  Some ex-
amples are briefly provided here, which are explained 
in more detail in Joughin et al (2018). 
Rock mass characterisation data estimated from core 
logging, should be composited over regular, discrete 
intervals representative of the problem dimension 
(figure 1). This is necessary to build a probabilistic 
model of the data that captures the variance at the 
scale of the problem.  Probability density functions 
can then be fitted to the frequency distribution of the 
data set. 
Intact rock strength data can be represented using the 
Hoek-Brown strength envelope (Hoek et al.2002), as 
illustrated in Figure 2. Assuming a constant mi allows 
one to calculate the equivalent UCS value for each of 
the data points and obtain a distribution capturing the 
variance of the strength envelope. 
Geometric effects, such as overbreak (as a result of 
poor blasting) can also be represented in the analyses.  
Underground measurements should ideally be used to 
determine the variability of excavation or pillar di-
mensions, but in the absence of actual data, a reason-
able assumption capturing the level of uncertainty as-
sociated with this parameter is necessary.  Simple 
triangular or uniform distributions are often appropri-
ate in these circumstances. 
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Figure 1 . Determining the variability of rock mass characterisation data 

 

 

 
 

Figure 2. Determining the variability of intact rock strength 

 

 
 
 

Stress uncertainty can have a significant influence 
on the results of the analyses.  Often stress data is lim-
ited or not available. Errors are also common in the 
available stress measurements and it is often not easy 
to determine whether variability is representative or 
due to errors. Generally, the magnitude of the vertical 
stress can be estimated with some degree of confi-
dence, but a greater degree of uncertainty is associ-
ated with the maximum and minimum horizontal 

stresses. Principal stress orientations are often not 
known with certainty.  Figure 3 shows an example 
distribution of the magnitude and orientation of the 
stress field.   
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Figure 3. Distribution of stress input parameters a) field stress 
magnitude b) field stress orientation 

 

1.2 Probabilistic analyses 

In probabilistic analyses, the Monte-Carlo (MC) 
ap-proach described in Kroese & Rubinstein 2012 is 
the best known and most widely used, often being ap-
plied to simple analytical closed form solutions.  
However, numerical modelling, particularly elasto-
plastic methods, require long solution times and it is 
generally not practical to run many models and there-
fore alternate methods are more typically used.  Three 
methods, namely the Point Estimate Method (PEM) 
(Rosenblueth 1975, 1981, Harr 1996, Chris-tian & 
Baecher 1999, 2002, Valley, Kaiser & Duff 2010), re-
sponse surface method (RSM) (Bradley 2007, Lü & 
Low 2011b, Langford & Diederichs 2015) and the re-
sponse influence factor (RIF)(Tapia et al. 2007, Stef-
fen et al. 2008, Wesseloo & Read 2009, Chiwaye & 
Stacey 2010, Joughin et al. 2016) are more often used 
to perform probabilistic anal-yses, where computa-
tional efficiency is critical.  A comprehensive expla-
nation of these methods will be provided in (Wes-
seloo & Muaka, 2018). 

An efficient probabilistic analysis approach, which 
utilises elastic modelling and the principle of 

superposition of load effects has been developed and 
implemented into an app (Wesseloo 2016) in mXrap 
(Harris & Wesseloo 2015). It is considered that the 
loads and their resulting effects can be add-ed or sub-
tracted providing that the structure behaves as a linear 
elastic material. Unit stress analyses are conducted 
for each component of the stress tensor.  Figure 4 
shows probability of failure contours calcu-lated us-
ing this method (Joughin et al. 2016, Joughin 2017).  
These results can be used to determine the probability 
of exceeding a given depth of failure. 

Although the use of elastic superposition provides 
a lot of insight into the problem and the influence of 
uncertainty, in many cases the use of elasto plastic 
analysis may be required.  In such cases the method 
of elastic superposition can be used to perform a pa-
rameter reduction study.  This may be very important 
since the reduction of parameters included in the use 
of the PEM, RIF and RSM will reduce the number of 
numerical analyses necessary for the probabilistic 
evaluation. 

Probabilistic block stability analyses can be per-
formed using JBlock (Esterhuizen 2003) originally 
applied in a risk-based design method for support de-
sign in South African narrow tabular stopes (Joughin 
et al. 2012a, 2012b). JBlock is designed to create and 
analyse geometric blocks or wedges, based on col-
lected data in the form of joint orienta-tions, trace 
lengths, joint conditions and friction an-gles.  The 
blocks are formed by the intersection of joints or 
faults in the excavation roof, which can fail by sliding 
or falling into the excavation (Figure 5).  JBlock is 
still limited in its ability to handle 3D tun-nel geome-
tries.  An example of its use in tunnels is provided in 
(Joughin et al. 2016), which also serves to illustrate 
that absolute accuracy and the most so-phisticated 
analysis is not a prerequisite for a robust risk based 
design.   

Currently discrete fracture network modelling and 
the subsequent is rarely used in design of mining 
drifts (Grenon et al. 2017).  In recent years great ad-
vances in discrete fracture networks modelling and 
block stability analysis have been made and probabil-
istic evaluation of structurally controlled instability 
will become more advanced and easier and to per-
form(Grenon et al. 2015, 2017). 

Detailed examples of these methods of analysis 
will be provided in(Joughin et al. 2018) . 

 



 

27 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 . Efficient calculation of the probability of failure using elastic superposition and Monte-Carlo simulation in mXrap 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5 . Rockfall simulation in JBlock 

 
 

1.3 Risk evaluation models 

Risk evaluation models should be developed to quan-
tify the consequences of stress damage or rockfalls.  
This requires a practical assessment of mining lay-
outs, potential zones of damage/rockfalls, production 
schedules and exposure of personnel, taking previous 
experience and judgement into consideration.   The 
purpose of the model is to realistically estimate the 
cost of damage, loss of revenue and the potential for 
injuries.  It should not be overly complex, but should 
address the most important consequences.   A risk 
evaluation model is briefly described below, while 
Joughin (2017), Joughin et al. (2018) provide a more 
detailed discussion. 

The cost of damage, loss in revenue and potential 
for injuries are all a function of the length of the tun-
nel affected.  It is therefore important to estimate the 
expected frequency of occurrence and extent of dam-
aging events in a tunnel.  Depending on the function 

of the tunnel, the effect on production and exposure 
of personnel will vary.  All these factors need to be 
taken into consideration. 

1.4 Frequency and extent of damage 

For rockfalls in a tunnel, the probabilistic block sta-
bility analysis results in a distribution of rockfall area 
and volume for the specified support system in a ge-
otechnical domain.  Since the simulation area (tunnel 
roof area exposed), it is easy to normalise by the total 
tunnel length exposed and duration of mining to de-
termine annual cumulative probability distributions 
(Figure 6).  For the purposes of the model it was as-
sumed that the rockfalls will be distributed evenly 
over the length of tunnel and the duration of the min-
ing. 
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Figure 6 . Cumulative normalised (years) rockfall area probabil-
ity distribution 

 
In the case of a tunnel subjected to high stress, it is 

necessary to estimate the frequency of occurrence of 
damage affecting a given length of the tunnel (Figure 
7).  Critical levels of damage can be selected using 
subjective engineering judgement based on the depth 
of failure or deformation in the tunnel walls.  The 
maximum deformation that can be tolerated before 
the tunnel becomes unserviceable or unsafe is a suit-
able criterion. 

The total length (L) of the access ramp, sublevel 
drive or stope drives will not normally be affected at 
the same time. In practice, the potential damage af-
fected length (lp) at a given time will be a function of 
the mining layout and sequence and the resulting 
stress influence. In the case of stope drives, the great-
est stress change is experienced close to the stope 
abutment and this is when large deformations are 
most likely to occur. The probabilistic stress analyses 
can be used as a guide to determining lp. For the 
sublevel drives, the greatest stress change will occur 
as a stope reaches its limit. The access drive will ex-
perience less significant stress changes, since it is fur-
ther away and while the probability of exceeding de-
formation criteria is expected to be lower, the 
potentially affected length may be larger. Selecting an 
appropriate lp will always be subjective, particularly 
in the case of the access ramp, and it is therefore nec-
essary to test different lp values and assess the influ-
ence on the model. 

This lp can be further sub-divided into short tunnel 

segment lengths (ls), which represent the natural var-

iability in rock mass characteristics and ideally refer-

ences to the composite interval length used for deter-

mining the variability of the rock mass characteristics 

(Figure 1). 

 
 

Figure 7.  Potential damage zones 

 
The probability (p) of exceeding the deformation 

criteria, determined during the probabilistic analysis 
of stress damage, is therefore applicable to the seg-
ment length. When the lp is affected, some or all of 
the length may experience excessive deformation. 
Figure. 8 shows some scenarios of possible damage 
over lp for a given p. 

 

Figure. 8. Possible damage over the potentially affected length 
of a tunnel 

 

The probability Pd(k,n,p) of exactly k segments be-
ing excessively damaged can be estimated using the 
binominal distribution: 

For the purposes of the model, it was assumed that 
damage would occur over the duration of mining and 
the entire length of the tunnels would ultimately be-
come exposed to stress damage.  The resulting cumu-
lative normalised expected frequency distribution for 
the main ramp is shown in Figure 9. Sub level drives 
and stope drives will have very different stress dam-
age hazard profiles and need to be analysed sepa-
rately. 
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Figure 9 . Cumulative normalised (years) expected frequency damage length distribution for the access ramp 

 

1.5 Economic losses 

The estimation of losses associated with rock damage 
in underground mines has been addressed by a sever-
alauthors (Joughin et al. 2012a, 2016, Abdellah, Mitri 
& Thibodeau 2014). The most significant economic 
consequences of the damage are the cost of remedia-
tion of the damaged section of the tunnel and the lost 
production due to inaccessibility during rehabilita-
tion. 

Rehabilitation usually involves the removal of 
loose rock and damaged support and then re-support-
ing. The cost of rehabilitation is the product of the 
length of damage and the cost per unit length.  The 
duration of rehabilitation will affect the production 
loss and can be estimated as the product of the length 
of damage and rate of rehabilitation. For rockfalls it 
can be assumed that the damaged length is the rock-
fall area divided by tunnel width.  Alternatively, the 
rockfall volume may be considered a more suitable 
parameter for estimating the cost and rate of rehabili-
tation, based on experience. 

During rehabilitation, production is likely to be af-
fected, but this depends on the purpose of the tunnel.  

Using Figure 7, it is shown that rehabilitation in 
the main access ramp would always affect the full 
production from these stopes and this will have an im-
mediate effect. Rehabilitation of the sublevel drive 
would probably only effect half of the production and 
there may be some flexibility in the production sched-
ule that allows some time before production is af-
fected. The proportion of daily production influenced 
when a stope drive is being rehabilitated depends on 
the number of active stopes in production and there is 
invariably some flexibility, so the production impact 
is not immediate.  

A simple algorithm can be used to estimate the po-
tential revenue loss per damaging incident as a func-
tion of duration of rehabilitation (a function of length 
of damage), revenue per ton mined and amount of 
production affected per day. 

The total damage loss per incident is therefore the 
sum of the revenue loss and rehabilitation cost.  Al-
gorithms can be developed in a similar manner to ac-
count for other potential damage losses. 

The cumulative frequency distributions in Figure 6 
and Figure 9 can be presented in terms of damage 
loss. 

1.6 Safety 

Individual safety risk is concerned with the risk to any 
particular individual and one would focus on as-
sessing the risk to individuals at highest risk.  The ex-
posure of personnel to rockfalls is primarily a func-
tion of temporal and spatial coincidence or being in 
the wrong place at the wrong time.   

Temporal coincidence is taken as the proportion of 
time people are exposed to a hazard.  As different 
shifts may have different exposure times it is best to 
evaluate this on a shift basis. 

The spatial coincidence depends on the length of 
tunnel that is excessively damaged (Figure 9) and 
therefore exposure needs to be calculate for any pos-
sible damage length ld that could occur ranging be-
tween ls and lp (the total potentially effected length).  
If a good support system is applied and conservative 
serviceability criteria are effectively implemented, it 
is likely that the support will be replaced before rock-
falls occur.  An additional factor can then be applied 
to represent this risk mitigation measure. 
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For block failures an equivalent length of damage can 

be determined by dividing the rockfall area by the 

width of the tunnel. Spatial coincidence can be ex-

pressed as the length of damage (ld) divided by the 

length of exposure (ld) (Figure 10). 

 
Figure 10. Spatial Coincidence 

 
Exposure can be mitigated by protecting personnel 

in the canopy of a vehicle (vulnerability) and by mon-
itoring the deformation and removing personnel, 
when the deformation criteria is exceeded. 

The individual exposure can by determined by 
considering the temporal and spatial coincidence for 
a single person, vulnerability, monitoring and then 
adjusted for the number of shifts worked per annum.  
Personnel may be exposed to a range of possible rock-
falls represent by the cumulative expected frequency 
distribution (Figure 6 and Figure 9) and therefore the 
probability of injury is the sum of the product of indi-
vidual exposure per rockfall size and frequency of oc-
currence.  

2 ACCEPTANCE CRITERIA 

 
Figure 11 illustrates the relationship between factor 
of safety (FS), probability of failure (PF) and Risk as 
design acceptance criteria within the design process.  
Due to the simplicity and general accepted nature of 
FS design, the FS assessment is seen as the first step 
in performing any engineering design.  Based on very 
low values of FS, one my deem the design unaccepta-
ble and improve on the design, or in cases where other 
considerations dictate the design, a very high FS may 
be sufficient to accept the design. In some circum-
stances, especially in cases where potential for opti-
misation exist the reliability of the design need to be 
quantified.  Similar to FS, a low or high PF may be 
sufficient to deem the associated risk inconsequential 
or unacceptably high. 

 
Societal safety risk is concerned with risk to all 

employees collectively.  It is important to consider all 
personnel that could be exposed to rockfalls.  Under 

different circumstances there could be individuals or 
groups of people working or travelling through the 
length of exposure (le).  It is important to analyse dif-
ferent exposure groups. 

In the case of groups of personnel working or trav-
eling together, the probability of injury of entire the 
group can be calculated as for an individual 

The binomial distribution can be used to calculate 
the probability of one or more people being injured 
when they are randomly travelling through a tunnel, 
because this takes the random coincidence of more 
than one person into consideration. 

Decision making based on FS or PF is often lim-
ited to the geotechnical team. The geotechnical team 
then implicitly accepts a risk profile without quantifi-
cation.  For some designs in the mine, this may not be 
acceptable and the risk associated with a design 
should be quantified. In such cases the design ac-
ceptance criteria should be dictated by management 
through the company risk profile. 

The risk assessment provides a context as well as 
an accepted risk level to which the engineer needs to 
design. 

Acceptance criteria will be published in (Wesseloo 
& Joughin, 2018) and are summarised briefly herein. 

2.1 Economic acceptance criteria 

The economic risk as a design acceptance criteria 
aims at maximising shareholder value. The term 
“maximising shareholder value” does not imply max-
imising the planned return.  The difference lies in the 
risk associated with different options. A very risky 
venture with a high possible return may have low 
shareholder value as the probability of realising that 
return on the investment is very low.  The economic 
risk profile of a mine is defined by management who 
is accountable to the shareholders. 

It ultimately boils down to the risk-reward balance 
and the risk profile of the company and, the risk-re-
ward balance best applicable to each situation.  The 
rock engineer is seldom, if ever, in the position to de-
fine the risk profile of the company.  This should be 
the task of management. Without guidance from man-
agement as to the appropriate risk level, the engineer 
cannot design appropriately (see  

Figure 11).  

Manymining companies utilise risk matrices, such as 

Figure 12, to define acceptance criteria for risk as-

sessments, which usually involves a great deal of en-

gineering judgement and estimation. The likelihood 

of an event occurring (rare to certain) and the severity 

of the consequences (insignificant to catastrophic) 

form the rows and columns of the matrix and the in-

tersections determine level of risk (low to extreme). 
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Figure 11. Relationship between FS, PF and Risk as design acceptance criterion within the design process 

 
While the category names for the levels of likeli-

hood, severity and risk are fairly universal, the bound-
aries of these categories do vary significantly. The 
scales are usually qualitative or semi-quantitative and 
are often updated with time (Brown 2012). Economic 
risk tolerances may vary depending on the size of the 
operation. Likelihood categories can be described in 
terms of probabilities, time periods or simply qualita-
tive descriptions. Applying different likelihood 
boundaries will influence the interpretation of levels 
of risk. Some authors have suggested using risk ma-
trices for risk evaluation (Brown 2012, Abdellah, Mi-
tri & Thibodeau 2014, Contreras 2015, Joughin et al. 
2016), but the subjective nature of these risk matrices 
can lead to different interpretations. 

The risk matrix in Figure 12 has time intervals to 
define the boundaries of likelihood categories.  This 
enables a more practical interpretation of likelihood 
and a common understanding of decision-making can 
be achieved. 

Using the cumulative normalised expected fre-
quency damage length distributions of and the eco-
nomic model, cumulative normalised expected fre-
quency distributions of economic loss can be 

presented using a risk matrix. The risk profile, based 
on stress damage for the access ramp is presented in 
Figure 13.  The risk profiles for different excavations 
will differ considerably. Both the severity and fre-
quency of occurrence of occurrence will differ. 

The probability acceptance level (p) for design 
should be selected to ensure that the risk is medium. 
Based on the risk profile presented, the p values for 
designshould be 2% for access drives. 

2.2 Safety Acceptance criteria 

Safety Risk as a design criterion has been socially 
difficult to deal with. Some company policies prevent 
the use of the words “probability of fatality”.  Pre-
venting the use of the words does nothing to reduce 
the risk to personnel and, in fact may result in inade-
quate attention given to the issue. 

A widespread safety objective of the mining indus-
try can be summed up in the slogan “zero harm”. This 
is a praiseworthy goal and the only morally defensible 
stance. It should, however, not be mistaken for a de-
sign acceptance level.  The engineer cannot design for 
a zero probability of injury (in the absolute sense). 
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Figure 12. Risk matrix example 

  

 

Figure 13. Economic risk profile for the access ramp (stress damage) 

 

With respect to safety risk, management is ac-
countable to the shareholders as well as to society 
through adherence to guidelines prescribed by regu-
latory bodies.  Accepted risk levels, therefore, do not 
have anything to do with any individual’s appetite for 
risk but is a measure of what society accepts as rea-
sonable. Ideally guidelines on what risk levels are ac-
cepted by a society needs to be developed through po-
litical process.  However, in mining, such guidelines 
do not exist and the engineers are forced to borrow 
risk acceptance levels from elsewhere.   

Guidance on what risk level is accepted by society 
can be obtained by comparing guidelines provided by 
government agencies and regulatory bodies of 

different countries and industries, mainly industries 
dealing with risks to public safety. 

Many different regulation agencies of many differ-
ent countries have provided guidelines.  These in-
clude British Columbia Hydro and Power Authority, 
the Australian National Committee on Large Dams 
ANCOLD, Australian Geomechanics society, sub-
committee on landslide Risk Management (2000), US 
Department of Interior Bureau of Reclamation, US 
Nuclear regulatory Commission, US federal Energy 
regulatory Commission, Norwegian petroleum indus-
try, Hong Kong Planning Department, Technical Ad-
visory Committee on Water Defences of the Nether-
lands, Britton’s Health and Safety Executive, (2001, 
1992, 1989). 

Likelihood Severity of consequences 

Insignificant 

> $1,000 

Minor 

> $10,000 

Moderate 

> $100,000 

Major 

> $1,000,000 

Catastrophic 

> $10,000,000 

Daily to 
weekly 

High High Extreme Extreme Extreme 

> Monthly Medium High High Extreme Extreme 

> Annually Low Medium High Extreme Extreme 

> 1 in 10 
years 

Low Low Medium High Extreme 

Rare Low Low Medium Medium High 
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Many of the guidelines employ the ALARP or 
ALARA concept which is the acronym for ‘As low as 
reasonably possible’ or ‘attainable’.  Very high risk 
are deemed “unacceptable” while very low risks are 
deemed “acceptable” with the ALARP region  

 
between these two defining the situation where 

further risk reductions is impractical or the cost are 
grossly disproportionate to the improvements made. 

For design purposes one need to know what risk 
level defines the ALARP region. 

Accident statistics provide a context to what risk 
levels the public are exposed to daily. One needs to 
assume involuntary risk for the mining work force un-
less it can be shown that the individual was empow-
ered (and cognitively able) to consciously accept the 
risk in exchange for a perceived reward.  A risk ac-
ceptance level for individual safety risk of 10-5 to 10-

6 seems to be an appropriate and defensible design 
value in line with societal expectations. 

In addition to the risk to an individual, the risk to 
society needs to be evaluated.  The exposure of the 
public to a mining structures comes mainly from the 
devastation caused by tailings dam failure.  For the 
mining, the public is not at risk and we will only con-
centrate on the societal risk to the work force. 

Societal safety risk acceptance levels are often pre-
sented in what is referred to as F-N charts (Figure 14). 
The F-N chart is in principle an inverse cumulative 
probability distribution on double logarithmic scale.  
The yearly probability of N or more fatalities on the 
vertical axis plotted against the number of fatalities 
N.  The upper and lower boundaries of the ALARP 
region in (Figure 14) were determined for the Aus-
tralian mining industry and a 500 m long tunnel, us-
ing the Hong Kong Planning Department criterion.  
These are, to some extent, dependant on the scale of 
the analysis and should be adjusted according to the 
length of the tunnel.  This will be explained in more 
detail in(Wesseloo & Joughin, 2018). 

 

Figure 14. Safety risk acceptance levels derived for Australian mining industry based on a National Risk Acceptance leveland the 
Hong Kong Planning Department criterion. 
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Figure 15. Fatal incident risk profile for access drive example (stress damage) 

 
The fatal incident risk profile for the access ramp 

is presented in Figure 15 which is the result of the 
safety risk evaluation model. The shape of societal 
risk curves for the access ramp is a function of the 
binomial distribution.  The societal risk curves in 
mechanised mines have very steep profiles, because 
larger groups of personnel are not often exposed.  In-
dividual risk is represented on the graph as individual 
points on the vertical axis.  Decisions in mechanised 
mines are usually governed by the risk of incidents 
with one or two people and by the individual risk, ra-
ther than major catastrophic events, where large num-
bers of people are fatally injured. 

For safety in the access ramp, the design probabil-
ity criterion could be as high as 10%, but this would 
be unacceptable from an economic perspective.  
However, for the other situations, this is quite differ-
ent.  In stope drives, the economic consequences are 
low, but personnel are exposed for longer times and 
the individual risk, becomes the defining risk crite-
rion. 

3 CONCLUDING REMARKS 

The risk-based design process is applicable under 
high stress conditions, it takes into account geotech-
nical uncertainty. The understanding of variability 
can be improved by collecting more data and improv-
ing the quality of data through training and quality 
control. Stress and model uncertainty remain a chal-
lenge in geotechnical engineering. Some degree of 

subjective engineering judgement will therefore al-
ways be required in geotechnical design. 

When determining ‘acceptable probabilities of 
failure’ for design it is necessary to evaluate the risk. 
The potential financial losses associated with stress 
damage will differ for different types of excavation. 
An economic model is a useful tool for risk evalua-
tion. Risk matrices used on mining operations assist 
with the practical interpretation of risk. 

Safety acceptance criteria should be defined based 
on international benchmarking and societal norms. 

The relative frequency approach is used by the in-
surance industry, where large amounts of data are 
available and it is possible to assess the potential risk 
quite reliably. In geotechnical engineering, it is ap-
propriate to incorporate a subjective degree of belief 
approach. Where good data is available, this will im-
prove confidence in the outcome and the degree of 
belief, but the interpretation will remain subjective. 
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