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Modelling diffuse instabilities in sands under drained conditions

A. M. RAMOS*, J. E. ANDRADE} and A. LIZCANO}

This paper presents a criterion for detecting diffuse
(homogeneous) instabilities in granular soils sheared un-
der fully drained conditions. The criterion is based on
bifurcation theory and applied to elasto-plasticity by
allowing multiple incremental solutions in elasto-plastic
soils, physically losing controllability of stress boundary
conditions. Drained diffuse instabilities are poorly under-
stood, and are induced by kinematic modes different
from those observed in shear bands and liquefaction
instabilities. Unlike shear bands, diffuse instabilities oc-
cur under fairly homogenous deformation modes and,
unlike liquefaction, drained instabilities are not generated
by the excess pore pressures. Recent experiments under
drained constant shear report sudden homogeneous in-
stabilities in samples of relatively dense and loose sands.
The criterion presented in this paper is used in conjunc-
tion with an elasto-plasticity model for sands to predict
and explain these reported drained instabilities. From a
practical standpoint, these developments serve to expand
the repertoire of potential instabilities that occur well
before failure, and which have been reported in case
studies of puzzling slope instability failures under fully
drained conditions.
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Cette communication présente un critéere pour la détec-
tion d’instabilités diffuses (homogenes) dans des sols
granulaires cisaillés, et dans des conditions entiérement
drainées. Ce critére est basé sur la théorie de la bifurca-
tion, et appliqué a D’élastoplasticité, en permettant des
solutions incrémentielles multiples dans des sols élasto-
plastiques - en perdant physiquement de la controlabilité
dans des conditions limites des contraintes. Les instabi-
lités diffuses drainées sont mal connues ; elles sont in-
duites par des modes cinématiques différents de ceux que
I’on releve dans des bandes de cisaillement et des instabi-
lités de liquéfaction. Contrairement aux bandes de cisail-
lement, des instabilités diffuses se produisent dans des
modes de déformation homogenes, et, contrairement a la
liquéfaction, des instabilités drainées ne sont pas pro-
duites sous D’effet de pressions interstitielles excessives.
Des expériences menées récemment dans des conditions
de cisaillement constant drainé font état d’instabilités
homogenes soudaines dans des échantillons de sable rela-
tivement dense et meuble. Le critere présenté dans la
présente communication est utilisé conjointement avec un
modele d’élastoplasticité pour les sables, afin de prédire
et d’expliquer ces instabilités drainées signalées. D’un
point de vue pratique, ces développements servent a
accroitre le répertoire d’instabilités potentielles survenant
bien avant la rupture, et qui ont été signalées dans des
études de cas présentant des instabilités de pentes intri-
gantes dans des conditions entierement drainées.

INTRODUCTION

Slope stability analysis is one of the key components of
geotechnical engineering practice and, as such, it is fairly
well understood under the paradigms of limit state or failure
analysis. However, there exist cases where slopes display
unstable behaviour well before failure conditions are
reached. For instance, Lade (1993) showed the existence of
instabilities under undrained conditions under stress levels
below failure for the submarine Nerlek berm. There have
also been cases of instability under essentially drained
conditions, such as the Wachusett Dam failure in 1907, and
analysed by Olson et al. (2000). These and other field case
studies have motivated ample research into the stability
characteristics of granular materials (Lade, 1992; Nova,
1994; Darve & Laouafa, 2000; Gajo et al., 2000; Chu et al.,
2003; Borja, 2006; Andrade, 2009).

Unstable behaviour can be defined as the sudden large
response of a system or material to relatively small perturba-
tions. In the case of soils, this can be observed as the
sudden large increase of shear strains as a result of a small
perturbation in loading conditions, for example. From a
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theoretical standpoint, Hill (1958) and Rudnicki & Rice
(1975) established a foundation for understanding loss of
uniqueness and stability in solids. In particular, the latter
improved our understanding of localisation bands, which
constitute a subset of instabilities where the deformation
mode is prescribed by the normal to the deformation band,
and by the dilatancy of the material. Liquefaction instabil-
ities have been studied by, among others, Lade (1992), Nova
(1994), Borja (2006) and Andrade (2009), under the frame-
work of Hill’s instability condition or the second-order work
(Darve & Laouafa, 2000). The kinematical constraint for
liquefaction instabilities is determined by purely undrained
conditions, which translate into constant-volume deforma-
tions in the case of incompressible solid and fluid constitu-
ents (Andrade, 2009). Therefore drained instabilities, where
deformations are not localised (cf. shear bands) and volume
is not preserved (cf. liquefaction), must be induced by
different kinematics.

Experimentally, Lindenberg & Koning (1981) were among
the first to recognise unstable behaviour in loose sands under
drained static conditions. Several experimental studies have
been performed under constant deviatoric stress (CDS), which
report sudden collapse of sandy soils under quasi-static load-
ing and for relative densities ranging from dense to loose
(Skopek et al., 1994; Gajo et al., 2000; Chu et al., 2003). A
typical stress path followed in the experiments is shown in
Fig. 1. Initially, samples are loaded under drained triaxial
compression (path from A to B) until a certain level of
deviatoric stress ¢ is reached at point B. Subsequently, a
constant deviatoric stress path is imposed, effectively reducing
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Fig. 1. Sketch of constant deviatoric stress (CDS) experiments.
Samples are initially sheared under drained triaxial compression
(from A to B), and subsequently to a constant deviatoric path of
decreasing normal pressure (from B to C). Suddenly, certain
samples develop an instability, and loss of controllability of
constant deviatoric stress is experienced

the mean stress p at constant rate. Suddenly, the sample
experiences an instability, represented by point C in the
figure. After point C, the sample is unable to follow the
prescribed stress trajectory, experiencing loss of controllabil-
ity (Nova, 1994). In their experimental study, Chu et al.
(2003) reported loss of controllability (to impose constant g)
and a sudden large increase in strains. These instabilities
occur under drained conditions, without the apparent presence
of shear bands; in fact the samples appear fairly homogeneous
up to the onset of instability. Further, Gajo et al. (2000) and
Chu et al. (2003) reported instabilities under CDS conditions
that were well above the so-called instability line (Lade &
Pradel, 1990; Vaid & Chern, 1983). CDS paths are believed
to model a decrease in mean effective pressure in slopes due
to a slow increase in pore pressures caused by rainfall
infiltration, or under submerged conditions.

Aiming at understanding instabilities occurring under
drained conditions in the field, the objective in the current
work is to model and predict instabilities under drained
conditions at a material level. In this paper, a simple
instability criterion is proposed, based on Hill’s instability
condition, and is applied to elasto-plasticity to explain and
predict the drained diffuse instabilities observed in the
aforementioned CDS experiments. To this end, the paper
aims at shedding some light on two fundamental questions.

(a) Is it possible to explain and predict drained diffuse
instabilities in the context of CDS experiments using
mathematical models?

(b) What are the mechanics governing drained diffuse
instabilities, and how do these relate to shear banding
and liquefaction?

To start answering these questions, the Chu et al (2003)
experiments are used as a test bed, and the Manzari &
Dafalias (1997) plasticity model is used, with the latest
enhancements (Dafalias & Manzari, 2004), to simulate the
behaviour of sands accurately under loose and dense condi-
tions. Furthermore, the instability criterion for loss of con-
trollability under drained conditions is carefully derived, and
contrasted with those associated with shear banding and
static liquefaction.

The structure of the paper is as follows. The next section,
‘Drained instability criterion’, derives the instability criterion
under the special case of triaxial loading, for the sake of
simplicity. The section ‘Constitutive model’ describes the

Manzari—Dafalias model, for completeness of presentation.
Numerical calculations are presented in the ‘Numerical pre-
dictions’ section, and these results are compared with the
experiments performed by Chu et al. (2003). The numerical
predictions are followed by a discussion section. Finally, the
paper is closed in the conclusions section, highlighting the
main findings.

DRAINED INSTABILITY CRITERION

Without loss of generality, and for the sake of simplicity,
the discussion is limited to axisymmetric conditions, equiva-
lent to those encountered in classic ‘triaxial’ experiments.
All findings pertaining to this section can be shown to hold
for general loading conditions using tensor analysis.

Consider a classic elasto-plastic model with a yield sur-
face F = F(p, q) as a function of the two stress invariants
p= %(oa +20,) and ¢ = 0, — 0, where 0, and o, are the
axial and radial components of the stress, respectively.
Similarly, a plastic potential function Q = Q(p, ¢) is con-
sidered, which defines the direction of the plastic strains
such that
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with 4 as the plastic multiplier, measuring the magnitude of
plastic strain increments. Assuming additive decomposition
of total strains into elastic and plastic components, then
& =& + & and & = & + &, where the subscripts v and s
stand for ‘volumetric’ and ‘deviatoric’ respectively. The
invariants of the strain rate are defined as usual as
&y = & + 28 and & = 3 (& + 2&).

The stress increments are related to the elastic portion of
the deformation increment in the usual way, by

p = K&, ¢ =3Gé; )

with K and G as the bulk and shear moduli of the soil.
Exploiting the additive decomposition of the strain rates and
the consistency condition, requiring F = 0, it is possible to
relate the stress increments to the total strain increments
such that
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with y = H 4+ K0,F0,0+ 3G0,F0,Q and H as the harden-
ing modulus, which controls the evolution of the internal
plastic variables in the model. Equation (3) furnishes the classic
constitutive relation between the stress increment & and the
strain increment ¢ by way of the constitutive tangent c¢. The
determinant function of the constitutive tangent is given by

dete = > KGH )
X

Under stress-controlled conditions, the left-hand side of
equation (3) is prescribed. For example, under CDS paths,
¢ =0 and p = const > 0 is prescribed. Loss of controllabil-
ity (Nova, 1994), under stress conditions, is achieved when
detc = 0. In this case, loss of controllability (Imposimato &
Nova, 1998) can be shown to be the same condition for loss
of uniqueness/stability in the sense of Hill (1958). For an
elasto-plastic model, such as the one presented above, this
condition coincides with
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H=0—dete=0 5)

Since the hardening modulus is typically a continuous func-
tion that is positive at the outset of loading, H =0 marks
the transition from hardening to softening or perfect plasti-
city. Furthermore, when H =0, the condition & =0 is
achieved with an eigenvector (strain rate) of the form

&y ad,0 6

& ad, 0 ©
where ¢ is an arbitrary scalar. The physical significance of
the above developments is that, at the onset of instability
signalled by H = 0, arbitrary strain increments in the direc-
tion of the plastic strain increments can be achieved, (cf.
equation (6)) and, as a consequence, loss of controllability
in the stress increments is observed. These theoretical ob-
servations can be applied to the experiments performed
under CDS, where sudden and large increments of strains
are observed, and the stress conditions cannot be controlled.
Remark 1. From the developments presented above, it is
possible to contrast drained diffuse instabilities with static
liquefaction and strain localisation. The first difference is the
onset of instability. In the case of drained diffuse instability,
the onset is H =0, whereas for strain localisation under
triaxial compression, Rudnicki & Rice (1975) derived a
localisation criterion such that H = Hg, # 0, in general.
Static liquefaction, which is a diffuse instability under un-
drained conditions, has an instability criterion H = Hp <0,
in general (Andrade, 2009). However, it is possible for these
criteria to coincide under unique circumstances. Perhaps the
clearest difference is the kinematic conditions. In contrast to
the eigenvector shown in equation (6), static liquefaction
occurs under undrained conditions, which implies &, = 0 for
incompressible constituents. On the other hand, shear bands
are constrained to deformations imposed by the normal to
the shear band and the dilatancy angle.

In the following section, a particular elasto-plastic model
is presented to describe the behaviour of sandy soils, such as
those utilised in Chu et al. (2003). The constitutive model is
amenable to the instability analysis presented above, and will
be used to predict instabilities observed in the laboratory.

CONSTITUTIVE MODEL

This section briefly describes the Manzari & Dafalias
(1997) model, with its recent modifications (Dafalias &
Manzari, 2004) aimed at accounting for changes in fabric
that ultimately could affect dilatancy. A simplified version is
presented, applicable to triaxial loading, without load rever-
sals. For a more complete description of the model, inter-
ested readers are referred to the original papers cited above.

The constitutive model is framed in the critical state soil
mechanics concept (Schofield & Wroth, 1968), and the
elastic response is hypoelastic. The shear and bulk moduli
are give such that

(297 — e)? <p)”2 and K — 21+
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where Gy is a constant, v is Poisson’s ratio, e is the current
void ratio and p, is the atmospheric pressure. The elastic
region is enclosed by a yield surface in stress space, defining
a wedge

F(n, a)=ln—a|—m (8)

with 7 = ¢ /p as the stress ratio, a as the back stress and m
as a constant defining the width of the wedge, so that in p —

q space the wedge has an opening of 2 mp at any value p.
Fig. 2 shows the geometrical attributes of the model in stress
space. The inclination of the wedge defining the elastic
region is given by the back stress, the evolution of which is
governed by a kinematic hardening law

i = H )

where H is the hardening modulus.

Under axisymmetric conditions, without stress reversals,
the plastic strain directions take the following simple form
(cf. equation (1)): 9Q/0p = and 0Q/dq = 1. Hence the
ratio of volumetric to deviatoric plastic deformations is
weighted by the dilatancy B of the material, such that
& = f&P = BA. In order to complete the constitutive descrip-
tion, it remains to explicate the evolution of the hardening
modulus H and the dilatancy f.

The hardening modulus is a function of the state of the
material, and its sign is controlled by the relative distance to
the so-called bounding stress: that is

Goho(1 — cpe) (p>1/2

|’7_77in| Pat

H = h(M® —5) with h =
Pat

(10)

where % is a positive function, M® is the bounding stress
ratio and 4y and ¢ are positive constants. The evolution of
the dilatancy f is given by a function similar to that of the
hardening modulus, with the sign of the function dictated by
the distance to the dilatancy stress, so that

B = Aa(M* —7) (11)

with MY as the dilatancy stress ratio, as shown in Fig. 2. If
7 is less than the value of MY, a contractive response is
obtained; otherwise the model predicts dilation. The positive
scaling function for the dilatancy is affected by changes in
fabric such that

Ag = Ao(1 + (sz)) with z = —cz<—é€>(szmax +z) (12)

where A, is a positive constant and s = =1 according to
7 =a+ m. The brackets () are the Macaulay brackets,
representing a ramp function. Additionally, zn,x represents
the maximum value the state parameter z can take.

The model is made to comply with critical state soil
mechanics by postulating exponential evolution equations for
the bounding and dilatancy stress ratios respectively

MP = Mexp(—nPy) and M = Mexp(n®y) 13)

with #® and n% as positive constants. Conceptually, the

evolution equations shown above require that M° and M9
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Fig. 2. Schematic of yield surface and main ingredients plotted in
stress space. Shaded area represents elastic region, with inclina-
tion dictated by . Other important ingredients are the bounding
stress ratio M, dilatancy stress ratio M® and critical state ratio M



4 RAMOS, ANDRADE AND LIZCANO

coincide with M as ¥ — 0, requiring the state to tend to
critical state. The state parameter 1) = e — ¢, was defined by
Been & Jefferies (1985), and measures the distance to the
critical state from the current state in void ratio space.
Finally, the critical state line (CSL) is defined in void ratio
space according to the relationship proposed by Li & Wang
(1998)

13
€0 = e — Ao (i> (14)
Dat

with e, as the void ratio at p. =0, and A. and & as
constants. An example of the CSL given by this expression
is shown in Fig. 6 for Changi sand. A list of material
parameters for the constitutive model is given in Table 1
with reference values for Changi sand.

Remark 2. Tt is important to note the role of the constitutive
model at this point. The criterion for diffuse instability
presented earlier does not depend on a particular constitutive
model. In fact, it is applicable to any constitutive model
based on elasto-plasticity, and this would fit the general
framework presented earlier. There are numerous constitutive
models for sands available in the literature (e.g. Jefferies,
1993; Andrade & Borja, 2006; Andrade & Ellison, 2008).
However, in this paper the Dafalias & Manzari (2004) model
is selected for its versatility in capturing CDS paths, which
will be simulated in the following section. Ultimately, even
though the criterion is independent of the constitutive model,
the accuracy of the predictions is intimately related to the
accuracy of the constitutive model used.

NUMERICAL PREDICTIONS

This section presents numerical predictions using the
constitutive model presented above and the instability criter-
ion introduced in equation (5). These predictions are com-
pared with experimental results obtained by Chu et al
(2003), where constant deviatoric stress (CDS) paths were
imposed on relatively dense and relatively loose samples of
sand. Changi sand was used in the experimental programmes
to study the stability conditions under drained and undrained
situations in reclaimed land in Singapore (Chu et al., 2003;
Wanatowski & Chu, 2007; Chu & Wanatowski, 2008).
The constitutive model was calibrated using classic triaxial
compression tests performed by Wanatowski & Chu (2007).
The resulting material parameters are shown in Table 1. The
material parameters, calibrated under drained triaxial com-
pression, are held fixed during the CDS simulations, furnish-
ing true numerical predictions.

Table 1. Material parameters for Manzari—Dafalias model for
Changi sand

Constant Changi sand
Elasticity Gy 125
v 0-05
Critical state M 1-35
Ac 0-0919
e 0-963
3 0-4
Yield surface m 0-05
Plastic modulus ho 5
Ch 0-8
n® 111
Dilatancy Aoy 1-54
nd 35
Dilatancy: fabric Zimax 4
c. 600

Instability predictions in dilative sand

Two samples of relatively dense sand were tested by Chu
et al. (2003). The experimental responses for the two
samples loaded under CDS conditions are shown in Figs 3
and 4. The initial void ratio for the sample shown in Fig. 3
was ey ~ 0-66, and for the one shown in Fig. 4, ¢y ~ 0-65.
As shown in Figs 3(a) and 4(a), both samples were initially
consolidated isotropically to a cell pressure of 150 kPa
(point A). Subsequently, the samples were sheared under
drained triaxial compression (to point B). From the experi-
mental results shown in Figs 3(b), 3(c), 4(b) and 4(c), it can
be seen that the strains are small between loading stations A
and B (during the triaxial compression phase).

After the triaxial compression phase (ending at point B),
the samples are sheared under CDS. This CDS path is
achieved by keeping ¢ constant while slowly decreasing p at
a constant rate. From Figs 3(b), 3(c), 4(b) and 4(c) it can be
seen that strains become significantly larger at the beginning
of the CDS path, but the sample is still stable. As the
samples are relatively dense, the volumetric strains are ob-
served to be purely dilative during the CDS phase. The
samples continue to deform homogeneously and under
stress-controlled conditions until point C is reached. At this
point (reached at slightly different stress states for the two
samples), the samples cannot be controlled, and significantly
larger shear and volumetric strains are experienced. Never-
theless, the samples did not display any appearance of shear
bands and remained fairly homogeneous, with a clear dila-
tive tendency.

Parallel to the experimental results, Figs 3 and 4 present
the numerical predictions using the Dafalias & Manzari
(2004) model and the instability condition shown in equation
(5). Both stress paths and strains are captured by the mech-
anical model remarkably well. Furthermore, Figs 3(d) and
4(d) show the evolution of the hardening modulus presented
in equation (10). As described before, the onset of drained
instability is flagged by A = 0. At this instant, it is possible
for a sample to observe arbitrarily large strain increments, in
the direction of the plastic strain increments (cf. equation
(6)). Figs 3(d) and 4(d) show the onset of H =0, which is
marked by point C' in Figs 3 and 4. Just as in the
experiments, the numerical samples experienced a significant
increase in strain and lost controllability. In both samples,
the numerical predictions are not only capturing the stress
paths and strains accurately, but actually predict the onset of
instability very well. Furthermore, the instability tendency,
with a clear surge in axial and volumetric strains, is very
well captured by the model.

Instability predictions in contractive sand

Similar to the relatively dense samples, Chu et al. (2003)
also tested a relatively loose sample of Changi sand with
initial void ratio ey ~ 0-95. The experimental results for this
sample are shown in Fig. 5. Results for the loose sample are
similar to those obtained for the dense samples, with the
obvious difference that this sample was contractive. As
before, the sample is subjected to a drained triaxial compres-
sion stage (A to B), followed by a constant-g stress path,
achieved by decreasing p at a constant rate. As before,
strains are relatively small during the triaxial compression
stage, and become more significant during the CDS path. At
point C, with mean pressure around 175 kPa, the sample is
reported to become unstable. There is an inflection point at
C in the strains, but it is not as significant as those observed
in the dense samples.

Figure 5 also shows the predictions given by the constitu-
tive model for both the stress path and the strains. The
evolution of the hardening modulus is also reported. The
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Fig. 3. Experimental and numerical results for relatively dense sample with ¢y ~ 0-66. (a) Stress path marking
transition from triaxial compression (A—B) to CDS (B—C). The sample is reported to become unstable at point C.
(b) Axial strain against pressure: there is a clear inflection point at C. (c) Volumetric strain against pressure:
there is a clear inflection point at C. (d) Hardening modulus evolution as a function of pressure. The onset of

instability is marked by H =0 at point C’

overall tendency of the results is very good, especially
considering the difficulty in capturing CDS paths using
regular plasticity models. Nevertheless, the quality of the
predictions is not as good as those realised for the dense
samples. As before, the onset of instability is flagged in the
numerical simulation by A =0, which is marked in Fig. 5
by point C'. Experimentally, the onset of instability is
marked as point C, and it can be seen that the prediction is
close to that observed in the experiment, but this time the
similarity is more qualitative than quantitative in nature.
However, the numerical prediction captures the overall ten-
dency of the behaviour very well, especially when one
recalls the true predictive nature of this exercise.

DISCUSSION

At least three salient observations are necessary and stem
naturally from this work. First, capturing CDS paths poses a
significant challenge for regular elasto-plasticity models.
Second, the instabilities reported herein, and all instabilities
in general, occur well before failure, signified by the CSL in
this model. Third, drained instabilities of the type presented
herein are not associated with static liquefaction instabilities,
at least not kinematically. The following discussion expands
on these three observations.

As was also noted by Gajo (2004), important challenges
are presented by the modelling of CDS paths using elasto-

plastic constitutive models. For instance, under yielding con-
ditions, cap models would consistently predict zero or dilative
plastic strain increments shortly after point B is attained (see
sketch in Fig. 1). Also, it might be possible for cap models to
predict a significant elastic regime right after point B. On the
other hand, models such as that of Dafalias & Manzari
(2004), equipped with kinematic hardening, can accommo-
date sudden switches in stress path direction, such as the one
experienced at point B. Isotropic hardening can in general
accommodate only monotonic loads.

Figure 6 shows the void ratio evolution for the experimen-
tal and numerical results presented in the previous section.
From the figure, at least two observations can be made. First,
although the three-dimensional nature of the CSL gives the
impression that the material stress state lies on the CSL (Fig.
5(a)), the instability points predicted by the model and
signalled by C’, occur well before reaching the CSL or
failure. This coincides with the observation that instability is
not synonymous with failure (Lade, 1992). In fact, instability
is a precursor of failure. This is true not only for the drained
instabilities presented in this paper, but also for others, such
as static liquefaction (Lade, 1992; Andrade, 2009) and shear
banding (Andrade & Borja, 2006; Ramos & Lizcano, 2010).
The second observation stemming from Fig. 6 is the model’s
difficulty in capturing the appropriate amount of dilatancy
mobilised by the sand. The loose sample contracts exces-
sively, whereas the dense samples dilate too little. However,
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Fig. 4. Experimental and numerical results for relatively dense sample with ¢, ~ 0-65. (a) Stress path marking
transition from triaxial compression (A—B) to CDS (B—C). The sample is reported to become unstable at point
C. (b) Axial strain against pressure: there is a clear inflection point at C. (¢) Volumetric strain against pressure:
there is a clear inflection point at C. (d) Hardening modulus evolution as a function of pressure. The onset of

instability is marked by H =0 at point C’

more experiments would afford a better calibration of the
dilatancy function of the material.

The third major point of this section is that the onset of
drained instabilities may not coincide with the onset of
undrained instabilities such as static liquefaction. Fig. 7
shows a comparison of undrained triaxial compression simu-
lations for the relatively loose sample of Changi sand stud-
ied in the previous section. The CDS results for the
experiment and simulation are also reproduced in the figure
for comparison. Three undrained triaxial compression
numerical tests are performed on identical samples of sand
with the same material conditions as those used for the loose
sample with ey = 0-95. The only difference among the three
undrained simulations was the initial confining pressures.
The stress paths obtained, and shown in Fig. 7, display
typical contractive behaviour, and undergo static liquefaction
instability as described in Andrade (2009). It can be shown
that, under undrained triaxial compression, the peak of the
deviatoric stress (marked by the star symbol) signifies the
onset of undrained instability or static liquefaction. Connect-
ing the points at the onset of undrained instability in all
three samples, one can define the so-called Lade’s instability
line (IL). From Fig. 7 it is very clear that the onset of
drained instability for this same sample, and signalled by
point C (or C’ for the simulation), is well above the IL. In
fact, drained instability occurs in a zone between the in-
stability line and the CSL. The reason for this is that, in

general, the kinematic constraint in the undrained condition
makes it impossible to have the appropriate strain mode (cf.
equation (6)). It can be shown that the strain mode for
undrained instability is one of pure shear, without any
dilatancy components.

CONCLUSION

The objective of this paper was to shed some light into
the mechanics of drained diffuse instabilities, from a theor-
etical perspective. A criterion has been presented, based on
bifurcation analysis and elasto-plasticity theory, for the onset
of diffuse instabilities. Exploiting the emerging strain incre-
ment mode, it has been possible to contrast drained diffuse
instability with some of its close relatives: shear bands and
static liquefaction. The framework introduced was applied to
the specific case of Changi sand experiments under drained
constant shear, where drained instabilities were reported in
the laboratory for relatively loose and relatively dense sands.
It has been shown that the proposed instability criterion
explains and predicts the experimental observations. Beyond
theoretical contributions to the understanding of the mech-
anics of instabilities in sands, this paper could contribute
to understanding slope instabilities reported in case studies
in the field, where fully drained conditions have been
reported but could not be accounted for from a mechanics
perspective.
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NOTATION
Ay material constant in Dafalias—Manzari model
Aq positive scaling function of dilatancy
¢ constitutive tangent
¢, material constant in Dafalias—Manzari model
e current void ratio
e. void ratio on critical state line
e 1initial void ratio
e.o critical state line material constant
F  yield surface
G shear modulus
Gy elastic shear modulus
H hardening modulus
H;, hardening modulus at onset of static liquefaction
Hg, hardening modulus at onset of shear band
h  positive state variable in Dafalias—Manzari model
ho material constant in Dafalias—Manzari model

K bulk modulus
M critical stress ratio
M, bounding stress ratio
M®  dilatancy stress ratio
m material constant in Dafalias—Manzari model
n® material constant in Dafalias—Manzari model
nY  material constant in Dafalias—Manzari model
p volumetric stress
p volumetric stress rate
Ppat atmospheric pressure
O plastic potential
q deviatoric stress
g deviatoric stress rate
z fabric dilatancy factor
Zmax Material constant in Dafalias—Manzari model
a back stress ratio
& evolution law for back stress
B dilatancy
& strain vector increment

&, axial strain rate
&, radial strain rate
& total deviatoric strain rate
elastic deviatoric strain rate
&P plastic deviatoric strain rate
&, total volumetric strain rate
elastic volumetric strain rate
&P plastic volumetric strain rate
1 stress ratio
Nip initial value of # at initiation of a new loading process
plastic multiplier
Ac critical state line material constant
v Poisson’s ratio
& critical state line material constant
0  stress increment
o0, axial stress
o, radial stress
1 state parameter
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