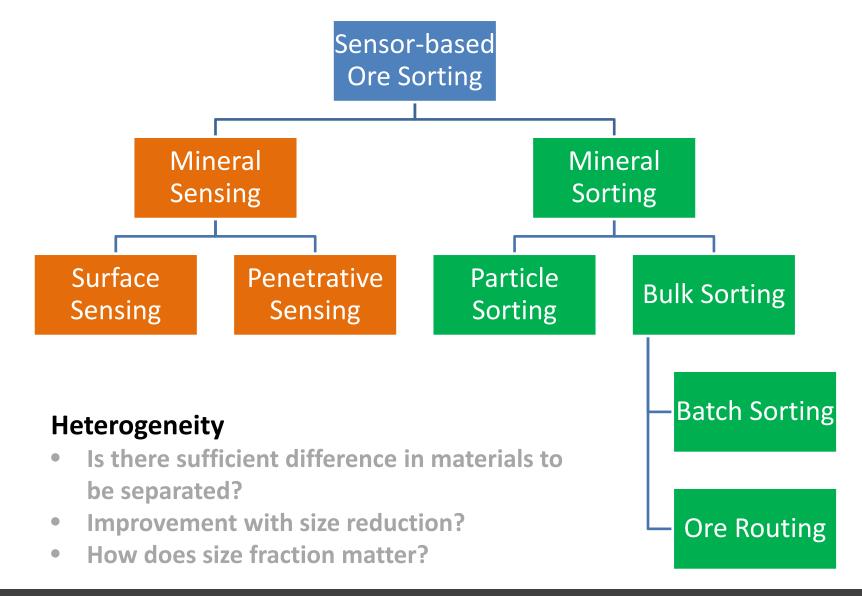
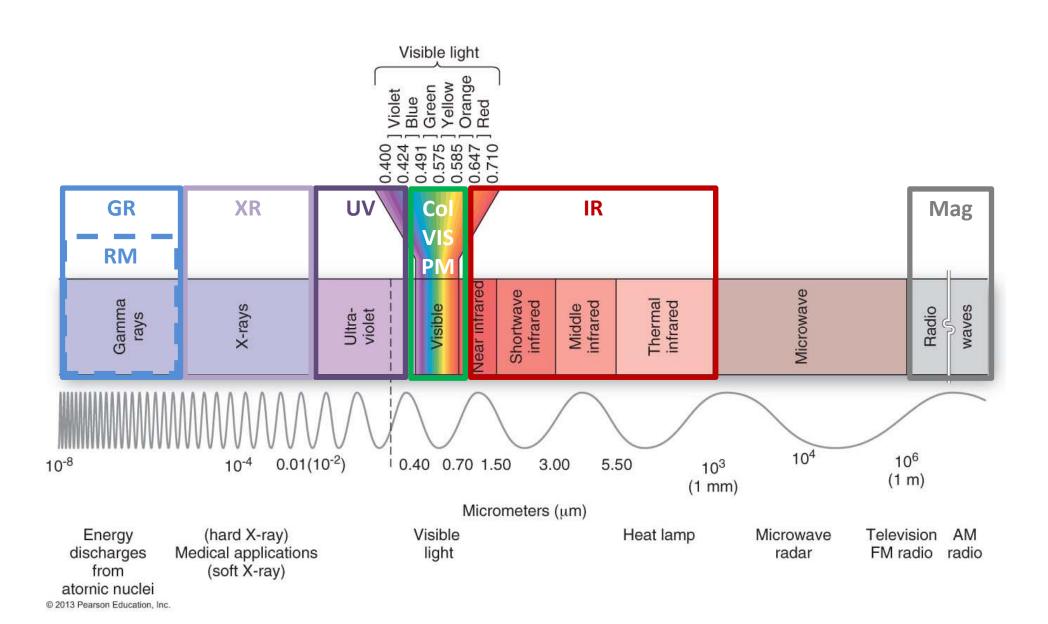
So you have it crushed and on a conveyor – Now what? Optimizing value through ore sorting

Bob McCarthy
November 18, 2014
Johannesburg, South Africa


Outline

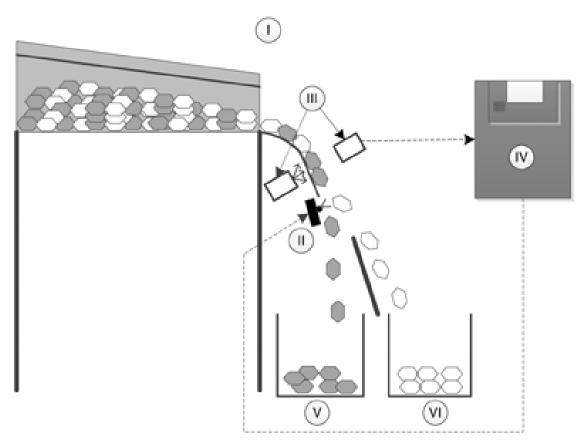

- What and Why
- Terminology
- Current technology
- Technology providers
- Applications
- Potential and limitations
- SRK assistance
- Conclusions

What and why?

- Ore-Sorting: sensor-based concentration, pre-concentration, or scavenging
- For pre-concentration, reject the waste before treating unnecessarily (money and resources)
 - Natural heterogeneity
 - Planned dilution internal and external
 - Unplanned dilution
- Advances in recycling and food industries have increased the options in sensing technology, most of which are equally applicable to mineral sensing
- Advances in computing power for mineral sensing algorithms
- Crushed material, on a conveyor, is a prime candidate for ore sorting
- Ore sorting is almost wholly applied to conveyed materials

Terminology

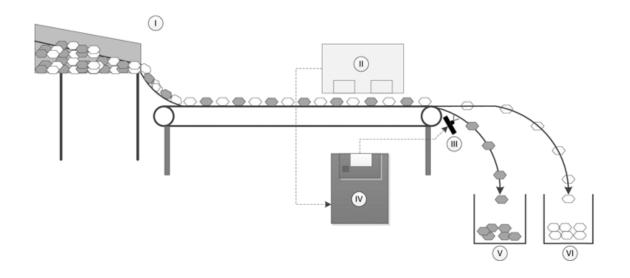
Method	Sensor Type	Sort Type	Materials	Limits	
PGNAA	Penetrative	Bulk	Limestone,Fe,Al,Ph,Mn,Cu,Zn	1-2 min. avg, <500mm rock, >20-30 kg/m, sub 1% detection	
NITA II	Penetrative	Bulk	Coal,C,H,O,Fe,K,Ca,S,Al,Cu,Ni,Mn,Si,Ti	1-2 min. avg, <300mm rock, <350mm dept need >1% for detection	
PFTNA	Penetrative	Bulk	Ni,Fe,Co,Mg,Si,Al,Mn,Cr,C,H,O,	<90mm rock, <280mm depth, 50-150kg/m	
RM	Penetrative	Particle	U	Only for radioactive minerals	
XRT	Penetrative	Particle	Base metals, industrial minerals, coal, diamonds, Au/Ag indirect	2-300 mm rock, <300 tph, >4-5 A.N. diff.	
XRF	Surface	Particle	Ni, Cu, Zn, Au, Ag, Fe, Cr, Mn, U, W, Sn, Al	Requires long exposure time, limited to A.N.>20, 30-250 mm rock, 20-50 tph	
XRL	Surface	Particle	Diamonds, fluorite, sphalerite, kunzite		
UV	Surface	Particle	Scheelite	Few minerals naturally respond to UV excitation	
VIS	Surface	Particle	Quartz, limestone, dolomite, feldspar, fluorite, gems, Au/Ag indirect		
RGB	Surface	Particle	Industrial minerals, gemstones, Cr, Au, Ni, Pt, Cu oxides, Au/Ag indirect	5-250 tph,	
PM	Surface	Particle	Industrial minerals, diamonds		


Method	Sensor Type	Sort Type	Materials	Limits		
LIBS	Surface	Particle	Elemental Analysis, most all	Sensitive to variations in distance from Laser/detector to target sample		
LIF	Surface	Particle	elements	Like LIBS, early stage of development few commercial applications		
VNIR	Surface	Particle		2-120 mm rock, 20-100 tph,		
SWIR	Surface	Particle				
MWIR	Surface	Particle	Industrial minerals, Fe ore	surface technique impacted by cleanliness and single perspective (though double sided set-ups exist)		
LWIR	Surface	Particle				
FIR	Surface	Particle				
EMS	Penetrative	Both	Fe ore, base metals with magnetic	9 60 mm rock 70 tnh		
IND	Penetrative	Both	response	8-60 mm rock, 70 tph		
MRS	Penetrative	Bulk	Chalcopyrite	300 mm rock, 1300 tph, Not all nuclei are magnetic		

Particle Sorting Process

- 1. Material Conditioning
 - Sizing and washing (depending on sensing technology)
- 2. Feed and Presentation
- 3. Detection and Evaluation
- 4. Mechanical Ejection

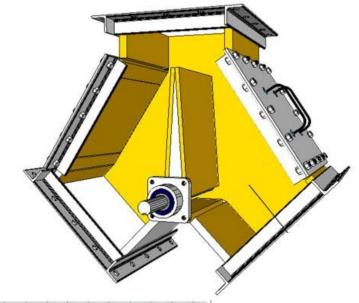
Chute sorter

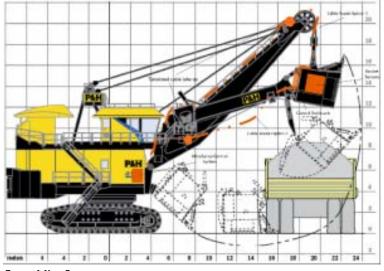

- Conditioning
- II. Separation
- III. Emitter-detector
- IV. Data processing
- V. Product stream
- VI. Reject stream

H. Wotruba, European Mineral Resources Conference, Leoben, September 2012

Conveyor belt sorter

- Conditioning
- II. Emitter-detector
- III. Separation
- IV. Data processing
- V. Product stream
- VI. Reject stream


H. Wotruba, European Mineral Resources Conference, Leoben, September 2012


Mechanical ejection

- Compressed air jets
 - 2 ms response
- Paddles/flaps
 - Pneumatic or hydraulic
 - 20 ms response 5 m/s movement=100 mm req'd. separation
- Water jets

Bulk Sorting

- Conveyor based
 - Telescopic conveyor
 - Reversible conveyor
 - Flop gates
 - Trippers
- Shovel bucket

Sensing Technology Providers

	Electromagnetic	Infrared	Optical	Ultraviolet	X-Ray	Gamma
Comex		NIR	Colour	UV	XRT	
CSIRO	MRS					
EVK		NIR, SWIR				
LLA Instruments		NIR				
<u>MineSense</u>	EMS		LIBS		XRF	
Multotec						NITA II
PANanalytical		NIR			XRF	PFTNA
Rados					XRF	
ScanTech						PGNAA, DUET
<u>Steinert</u>	Induction, Magnetic				XRT	
Thermo Scientific						PGNAA
<u>Tomra</u>	EMS	NIR, IR, MWIR	VIS, Colour, PM		XRT XRF,XRL	RM
			LIDC LIE		VDE	
IMA Engineering			LIBS, LIF		XRF	
SGS/CoreScan		VNIR, SWIR				
Specim		VNIR, SWIR, LWIR	RGB			
Spectral Evolution		NIR	VIS	UV		

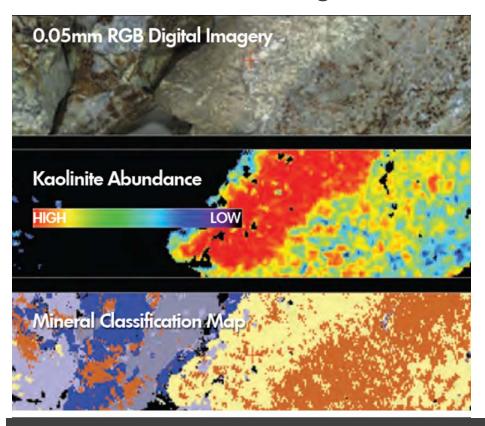
Surface sensing

Ore Sorting

Company also provides sorting

→ srk consulting

Penetrative sensing

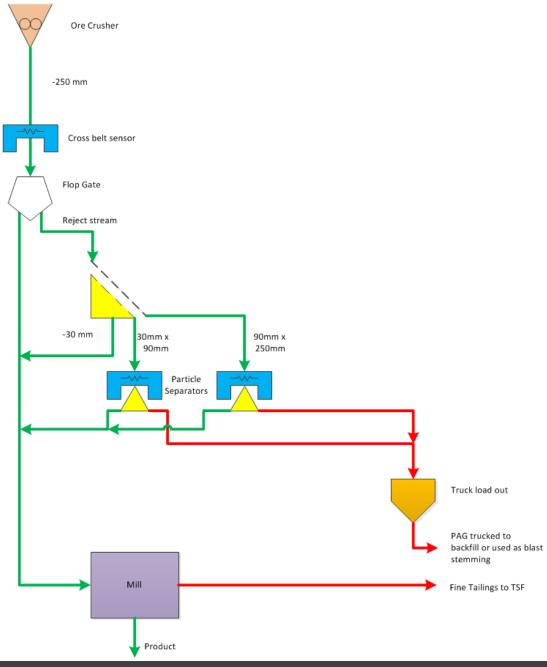

Technology Providers

- Primarily from recycling industry, dabbling in minerals
- Some dedicated to mining
- Sensing companies many
- Sorting companies few
- Secretive some

Opportunities – many!

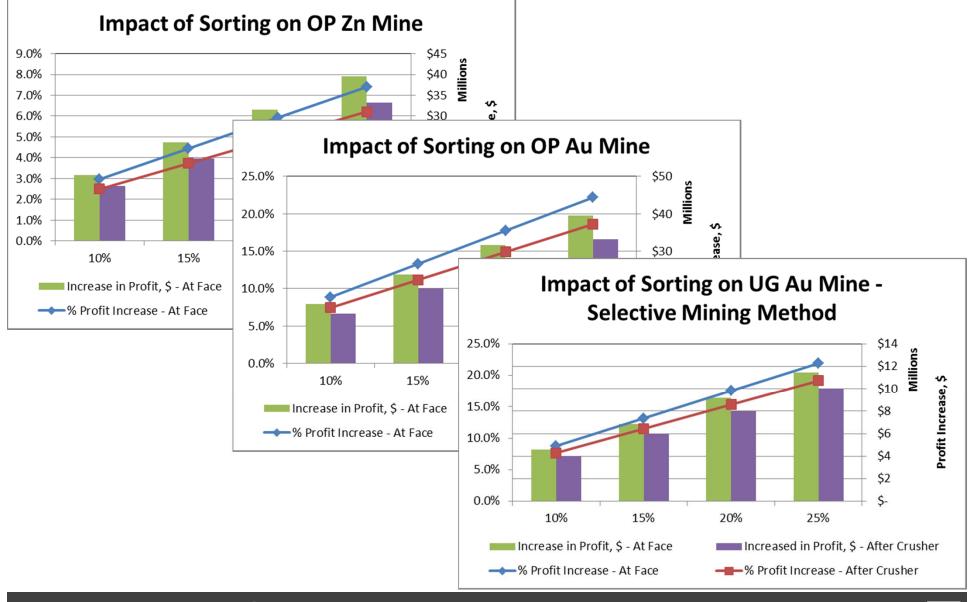
Applications

- Material characterization
 - Drill logging
 - Core scanning

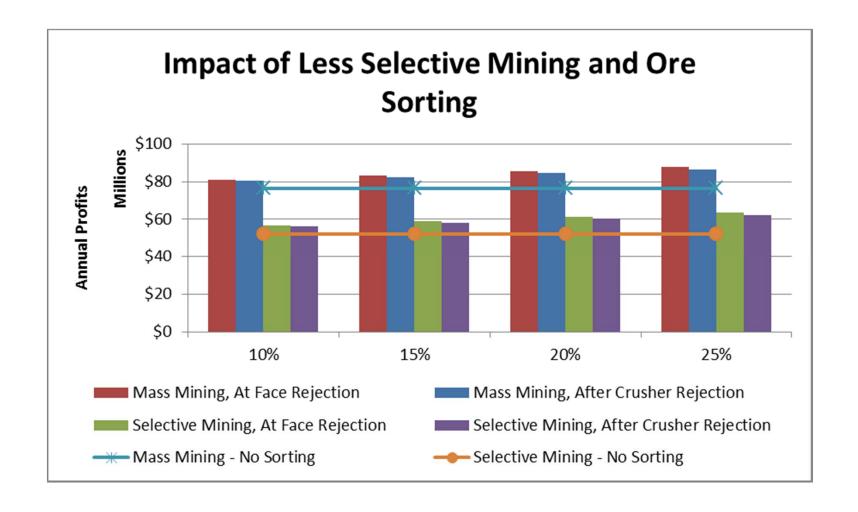

Applications

Sorting

- Concentration (finished product) vs pre-concentration (waste removal) vs scavenging (product from waste)
- Waste Rejection: at face or post primary crushing
 - Waste use potential road material, stemming, aggregate
- Underground pre-concentration
 - Save on hoisting, transport
 - Provide backfill
- PAG material removal (sulphides)
- SAG/AG pebbles
- Multi-stage and multi-technology
 - Remove material in stages to reduce throughput for technologies that require throughput limiting computational analysis or limiting mechanical separation
 - Multiple sensors on same built to identify waste; first technology tags particle as waste so that subsequent sensors/algorithms do not have to process


Applications Waste Crusher -250 mm Sensors Ore Crusher Flop gate/conveyor distribution Mineralized material -250 mm Waste -30 mm 30mm x 85mm x 250mm Sensor 85mm Particle Separators Flop gate/conveyor distribution NAG PAG Truck load out NAG trucked to Waste Dump PAG Conveyed to TSF Fine Tailings to TSF Mill Product

Applications


Potential

- Consider 3 hypothetical mining operations:
 - A Zn open pit mine, 10 Mtpa
 - A Au open pit mine, 10 Mtpa
 - A Au underground mine, 2 Mtpa
- All have 10% dilution
- OP mines have similar milling costs; UG has scaled higher milling unit costs
- Consider material rejection (10-25%) in 2 scenarios:
 - In mine ("at face")
 - After primary crusher

Potential – cont'd

- Consider impact of increasing dilution in UG Au mine in adopting a less selective mining method
- Mining cost of \$70/tonne (vs \$100/tonne)
- 25% dilution (vs 10%)
- All else remains the same

Limitations

- General
 - Analysis complexity limiting algorithms
 - False negatives
 - Lack of heterogeneity
 - Deposit variability
- Particle sorting
 - Feed presentation one or two sides, clean
 - Requires consistency of particle size (<3:1 variation)
 - Maintainability of compressed air ejection systems
 - Max 300 tph/m sorter width for particles 200-300 mm (XRT, Opt, NIR) vs 10-30 tph/m for XRF
- Bulk sorting
 - Conveyor-based: minimum batch size
 - Entrained good material

Realized Examples

- Iron ore
 - 56% Fe / 0.15% S sorted to 62% Fe / 0.04% S DSO by multi-stage XRT and Optical
- Tungsten-moly-bismuth
 - XRT rejected 50% of feed as waste to double the plant capacity
- Limestone
 - Low quality material, previously wasted, is upgraded such that only half the total material previously mined is now mined

SRK Assistance

* - member of ICS (Intelligent Conveyor Systems) Consortium

Conclusions

- Sorting is a concept and technology that has been around for a while and continues to develop
- Able to pre-concentrate ores by rejection of waste materials
- Pre-concentration reduces demands on water, energy, etc.
- Pre-concentration enables lower cost, less selective mining methods
- Pre-concentration can reduce mill opex and capex
- Can reduce cut-off grade to extend reserves and mine life
- Sensing technology is now able to detect most all elements and minerals in real time and at high speed
- Sorting technology can be throughput limiting
- Multi-stage sorting, including mix of bulk and particle sorting, can improve throughput
- Scope of potential applications is extensive

Thank-you!

For more information:

Bob McCarthy bmccarthy@srk.com